scholarly journals A DOPA antagonist, DOPA cyclohexyl ester inhibits transient brain ischemia-induced release of glutamate and delayed neuronal cell death in striatal and hippocampal region of in vivo rats

1999 ◽  
Vol 114 (supplement) ◽  
pp. 180-185
Author(s):  
Yoshio Goshima ◽  
Nobuya Furukawa ◽  
Nobutaka Arai ◽  
Takeaki Miyamae ◽  
Yukio Sasaki ◽  
...  
2021 ◽  
Author(s):  
Alonso Gamero-Quijano ◽  
Shayon Bhattacharya ◽  
Pierre-André Cazade ◽  
Andrés F. Molina-Osorio ◽  
Cillian Beecher ◽  
...  

<p>Programmed cell death <i>via</i> apoptosis is a natural defence against excessive cell division, crucial at all stages of life from foetal development to maintenance of homeostasis and elimination of precancerous and senescent cells. Here we demonstrate an electrified liquid bio-interface that replicates the molecular machinery of the inner mitochondrial membrane at the onset of apoptosis. By mimicking <i>in vivo</i> cytochrome <i>c</i> (Cyt <i>c</i>) interactions with cell membranes, our platform allows us to modulate the conformational plasticity of the protein by simply varying the electrochemical environment at an aqueous|organic interface. As proof-of-concept, we use our electrified liquid bio-interface to identify drug molecules that can potentially downregulate Cyt <i>c</i> and protect against uncontrolled neuronal cell death in Alzheimer’s disease and other neurodegenerative disorders.</p>


Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1641-1649
Author(s):  
B. Diaz ◽  
J. Serna ◽  
F. De Pablo ◽  
E.J. de la Rosa

Programmed cell death is an established developmental process in the nervous system. Whereas the regulation and the developmental role of neuronal cell death have been widely demonstrated, the relevance of cell death during early neurogenesis, the cells affected and the identity of regulatory local growth factors remain poorly characterized. We have previously described specific in vivo patterns of apoptosis during early retinal neurogenesis, and that exogenous insulin acts as survival factor (Diaz, B., Pimentel, B., De Pablo, F. and de la Rosa, E. J. (1999) Eur. J. Neurosci. 11, 1624–1632). Proinsulin mRNA was found to be expressed broadly in the early embryonic chick retina, and decreased later between days 6 and 8 of embryonic development, when there was increased expression of insulin-like growth factor I mRNA, absent or very scarce at earlier stages. Consequently, we studied whether proinsulin and/or insulin ((pro)insulin) action in prevention of cell death has physiological relevance during early neural development. In ovo treatment at day 2 of embryonic development with specific antibodies against (pro)insulin or the insulin receptor induced apoptosis in the neuroretina. The distribution of apoptotic cells two days after the blockade was similar to naturally occurring cell death, as visualized by TdT-mediated dUTP nick end labeling. The apoptosis induced by the insulin receptor blockade preferentially affected to the Islet1/2 positive cells, that is, the differentiated retinal ganglion cells. In parallel, the insulin survival effect on cultured retinas correlated with the activation of Akt to a greater extent than with the activation of MAP kinase. These results suggest that the physiological cell death occurring in early stages of retinal development is regulated by locally produced (pro)insulin through the activation of the Akt survival pathway.


2002 ◽  
Vol 383 (5) ◽  
pp. 785-791 ◽  
Author(s):  
Satavisha Dutta ◽  
Yuk Chun Chiu ◽  
Albert W. Probert ◽  
Kevin K.W. Wang

Abstract Activation of calpain results in the breakdown of α II spectrin (αfodrin), a neuronal cytoskeleton protein, which has previously been detected in various in vitro and in vivo neuronal injury models. In this study, a 150 kDa spectrin breakdown product (SBDP150) was found to be released into the cellconditioned media from SHSY5Y cells treated with the calcium channel opener maitotoxin (MTX). SBDP150 release can be readily quantified on immunoblot using an SBDP150- specific polyclonal antibody. Increase of SBDP150 also correlated with cell death in a timedependent manner. MDL28170, a selective calpain inhibitor, was the only protease inhibitor tested that significantly reduced MTXinduced SBDP150 release. The cellconditioned media of cerebellar granule neurons challenged with excitotoxins (NMDA and kainate) also exhibited a significant increase of SBDP150 that was attenuated by pretreatment with an NMDA receptor antagonist, R()-3-(2-carbopiperazine-4-yl)propyl-1- phosphonic acid (CPP), and MDL28170. In addition, hypoxic/hypoglycemic challenge of cerebrocortical cultures also resulted in SBDP150 liberation into the media. These results support the theory that an antibody based detection of SBDP150 in the cellconditioned media can be utilized to quantify injury to neural cells. Furthermore, SBDP150 may potentially be used as a surrogate biomarker for acute neuronal injury in clinical settings.


2010 ◽  
Vol 11 (1) ◽  
Author(s):  
Fang Cao ◽  
Ryuji Hata ◽  
Pengxiang Zhu ◽  
Shoichiro Takeda ◽  
Tadashi Yoshida ◽  
...  

2018 ◽  
Vol 25 (8) ◽  
pp. 1394-1407 ◽  
Author(s):  
Goutham K. Ganjam ◽  
Nicole Angela Terpolilli ◽  
Sebastian Diemert ◽  
Ina Eisenbach ◽  
Lena Hoffmann ◽  
...  

1995 ◽  
Vol 690 (2) ◽  
pp. 145-156 ◽  
Author(s):  
David D. Limbrick ◽  
Severn B. Churn ◽  
Sompong Sombati ◽  
Robert J. DeLorenzo

Sign in / Sign up

Export Citation Format

Share Document