scholarly journals Optimization of bioremediation-cocktail for application in the eco-recovery of crude oil polluted soil

2020 ◽  
Vol 3 ◽  
pp. 7
Author(s):  
Joseph E. Agbaji ◽  
Eucharia O. Nwaichi ◽  
Gideon O. Abu

Background: Environmental sustainability is the driver for finding the optimal bioremediation cocktail with the combination of highly potent hydrocarbonoclastic strains and the nutrient additives that significantly enhance mineralization of crude oil in polluted soil in order to mitigate its deleterious effects on the environment. In this study, four hydrocarbon-degrading bacterial strains were pre-selected from mined rhizobacterial isolates in aged crude oil-contaminated soil.  Method: Agrowaste residues of poultry-droppings, corn chaff, and plantain peel were selected among others for their ability to support high biomass of selected bacterial strains. Baseline proximate analysis was performed on the agrowaste residues. Simplified, one variable at a time (OVAT) was employed in the validation of the variables for optimization using the Multivariate analysis tool of Response Surface Methodology (RSM). To test the significant formulation variables, the Box-Behnken approach using 15 runs design was adopted. Results:  The rate of contaminant removal was observed to fit into a quadratic function. For optimal rate or contaminant removal, the fitted model predicted the optimal formulation cocktail condition to be within 0.54 mg/kg (Corn steep liquor), phosphate 137.49 mg/kg (poultry droppings) and 6.4% inocula for initial TPH of 9744 mg kg-1 and THC of 9641 mg kg-1 contaminant level. The model for the application of the bioremediation product and the variables evaluated had a significant p-value < 0.005 for the attainment of 85 to 96 % of TPH and THC removal after 56 days of treatment. Conclusions:  This study has shown the need to harness the abundant agrowaste nutrients in supporting high throughput rhizobacteria in the formulation of a bioremediation agent suitable for use in the reclamation of oil spill sites in the Niger Delta oil-producing region.

2021 ◽  
Vol 20 (1) ◽  
pp. 109-124
Author(s):  
V.C Wokem ◽  
E.D. Momoh

The exploration, production and refining of crude oil has led to severe environmental degradation in the oil producing communities of the Niger Delta region of Nigeria. Enhanced bioremediation of tropical rainforest soil artificially polluted with crude oil, bioaugmented with nitrogen fixing bacteria (NFB) and biostimulated with poultry droppings was carried out ex situ. Soil sample was collected at 15cm depth from tropical rainforest soil of the University of Port Harcourt, Nigeria. The NFB was isolated from roots of leguminous plant Arachis hypogea, identified as Nitrobacter species. Bioaugmentation by application of NFB served as option A, option B (biostimulation by application of poultry droppings), option C (No amendment) served as the control. Bioremediation was monitored for 28 days for interval of 14 days, and determined using the percentage ratio of total petroleum hydrocarbon (TPH) losses for each period to TPH at initial day (day zero). Results of total culturable heterotrophic bacterial (TCHB) counts showed that highest range in option B (1.9×104- 2.4×109Cfu/g) than in option A (7.8×106 -2.29×107Cfu/g) and C (6.75×106 -2.6×107Cfu/g) respectively. Similarly, hydrocarbon utilizing bacterial (HUB) counts had higher range in option B (1.20×105 - 1.9×107Cfu/g) than in option A (8.30×104 - 2.30×105Cfu/g) and option C control (4.3×104 −1.69×105 Cfu/g) respectively. Changes in physicochemical parameters during the study showed reductions in nitrate, phosphate and TPH in all the options expect pH which showed slight increase in option C (6.20-6.24). Characterization and identification for bacteria revealed the following HUB genera Pseudomonas, Citrobacter, Bacillus, Corynebacterium, Micrococcus, Klebsiella, Staphylocuccus and Nitrobacter). The percentage losses in TPH from gas chromatography (GC) results showed the following; option A (44.24%) option B (61.08%) and option C - control (27.28%) respectively. The results from this study showed that option B, the application of poultry droppings as biostimulant was more efficient than the application of NFB in enhanced bioremediation of crude oil polluted soil, hence the use of poultry droppings which is available as organic waste, eco-friendly and cost-effective is recommended asbiostimulant for enhanced bioremediation in environmental cleanup of crude oil impacted-sites of the Niger Delta region of Nigeria. Key Words: Bioremediation, Crude oil polluted-soil, Biostimulation, Bioaugumentation, Poultry droppings, Nitrogen fixing bacteria.


2021 ◽  
Author(s):  
Chioma Bertha Ehis-Eriakha ◽  
Stephen Eromosele Akemu ◽  
Simon Obgaji Otumala ◽  
Chinyere Augusta Ajuzieogu

Globally, the environment is facing a very challenging situation with constant influx of crude oil and its derivatives due to rapid urbanization and industrialization. The release of this essential energy source has caused tremendous consequences on land, water, groundwater, air and biodiversity. Crude oil is a very complex and variable mixture of thousands of individual compounds that can be degraded with microbes with corresponding enzymatic systems harboring the genes. With advances in biotechnology, bioremediation has become one of the most rapidly developing fields of environmental restoration, utilizing microorganisms to reduce the concentration and toxicity of various chemical pollutants, such as petroleum hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalate esters, nitroaromatic compounds and industrial solvents. Different remediation methods have been introduced and applied with varied degrees of success in terms of reduction in contamination concentration without considering ecotoxicity and restoration of biodiversity. Researchers have now developed methods that consider ecotoxicology, environmental sustainability and ecorestoration in remediation of crude oil impacted sites and they are categorized as biotechnological tools such as bioremediation. The approach involves a natural process of microorganisms with inherent genetic capabilities completely mineralizing/degrading contaminants into innocuous substances. Progressive advances in bioremediation such as the use of genetically engineered microbes have become an improved system for empowering microbes to degrade very complex recalcitrant substances through the modification of rate-limiting steps in the metabolic pathway of hydrocarbon degrading microbes to yield increase in mineralization rates or the development of completely new metabolic pathways incorporated into the bacterial strains for the degradation of highly persistent compounds. Other areas discussed in this chapter include the biosurfactant-enhanced bioremediation, microbial and plant bioremediation (phytoremediation), their mechanism of action and the environmental factors influencing the processes.


Author(s):  
Abimbola G. Olaremu ◽  
Williams R. Adedoyin ◽  
Odunayo T. Ore ◽  
Adedapo O. Adeola

AbstractMetallic composites represent a vital class of materials that has gained increased attention in crude oil processing as well as the production of biofuel from other sources in recent times. Several catalytic materials have been reported in the literature for catalytic cracking, particularly, of crude oil. This review seeks to provide a comprehensive overview of existing and emerging methods/technologies such as metal–organic frameworks (MOFs), metal–matrix composites (MMCs), and catalytic support materials, to bridge information gaps toward sustainable advancement in catalysis for petrochemical processes. There is an increase in industrial and environmental concern emanating from the sulphur levels of oils, hence the need to develop more efficient catalysts in the hydrotreatment (HDS and HDN) processes, and combating the challenge of catalyst poisoning and deactivation; in a bid to improving the overall quality of oils and sustainable use of catalyst. Structural improvement, high thermal stability, enhanced cracking potential, and environmental sustainability represent the various benefits accrued to the use of metallic composites as opposed to conventional catalysts employed in catalytic cracking processes.


2019 ◽  
Vol 13 (10) ◽  
pp. 402-409
Author(s):  
Olusanya Emmanuel Oludele ◽  
Damilola Tope Ogundele ◽  
Kayode Odeniyi ◽  
Olayinka Shoyode

2021 ◽  
pp. 117674
Author(s):  
Chioma Bella Aliku ◽  
Christian N. Madu ◽  
OrevaOghene Aliku
Keyword(s):  

2014 ◽  
Vol 26 (11) ◽  
pp. 3281-3286
Author(s):  
Hong Qi Wang ◽  
Yicun Zhao ◽  
Fei Hua

Forests ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 418
Author(s):  
Gifty Acquah ◽  
Brian Via ◽  
Tom Gallagher ◽  
Nedret Billor ◽  
Oladiran Fasina ◽  
...  

Pinus taeda L. (loblolly pine) dominates 13.4 million ha of US southeastern forests and contributes over $30 billion to the economy of the region. The species will also form an important component of the renewable energy portfolio as the United States seeks national and energy security as well as environmental sustainability. This study employed NIR-based chemometric models as a high throughput screening tool to estimate the chemical traits and bioenergy potential of 351 standing loblolly pine trees representing 14 elite genetic families planted on two forest sites. The genotype of loblolly pine families affected the chemical, proximate and energy traits studied. With a range of 36.7% to 42.0%, the largest genetic variation (p-value < 0.0001) was detected in the cellulose content. Furthermore, although family by site interactions were significant for all traits, cellulose was the most stable across the two sites. Considering that cellulose content has strong correlations with other properties, selecting and breeding for cellulose could generate some gains.


Author(s):  
J. O. Dasetima-Altraide ◽  
D. N. Ogbonna ◽  
T. K. S. Abam ◽  
A. E. Gobo

Aim: To assess the Physicochemical indices of Phytoremediated Crude Oil polluted amended soil using grass plant Cyperus esculentus (Cyp) and Phyllanthus amarus (Phy). Study Design: The study employs experimental design, statistical analysis of the data and interpretation. Place and Duration of Study: Rivers State University demonstration farmland in Nkpolu- Oroworukwo, Mile 3 Diobu area of Port Harcourt, was used for this study. The piece of land is situated at Longitude 4°48’18.50” N and Latitude 6ᵒ58’39.12” E measuring 5.4864 m x 5.1816 m with a total area of 28.4283 square meter. Phytoremediation process monitoring lasted for 240 days; analyses were carried out monthly at 30 days’ interval. Methodology: The study was carried out on Crude Oil Polluted soil (PS) amended with bio-nutrient supplements (Spent Mushroom Substrate (SMS) and selected fungi (Aspergillus niger(AN) andMucor racemosus (MR)) used to stimulate and augment the indigenous microbial population present in a crude oil polluted soil thereby enhancing hydrocarbon reduction in pari per sue with phytoremediation (uptake of Crude oil by test plants) over a period of 240 days. Ten (10) experimental plots (two Control (Unpolluted and polluted soil without amendment) and eight polluted amended/treated plots) employing Randomized Block Design (each having dimensions: 100 x 50 x 30 cm LxBxH); formed and mapped out on agricultural soil and left fallow for 6 days before contamination on the seventh day; after which it was allowed for 21 days for proper contamination and exposure to natural environmental factors (to mimic soil crude oil spill site); thereafter nutrients/organics (biostimulating agents) and bioaugmenting organisms were applied. Baseline studies were carried out on soil profile before and after contamination, major parameters monitored and assayed were Total Petroleum Hydrocarbon (TPH) uptake by plant roots and stem, Polycyclic Aromatic Hydrocarbons (PAHs) and TPH reduction in soil. Other physicochemical properties analyzed in the soil from different plots were pH, Electrical Conductivity, Moisture Content, Total Nitrogen, Available Phosphorus, Potassium, Total Organic Carbon, Plant Height, Iron, Lead and Zinc at regular intervals; days 1, 60, 90, 120, 150, 180, 210 & 240. The rate of phytoremediation was estimated from percentage (%) uptake of Total petroleum hydrocarbon (TPH) in plant roots and stem from day 1 -240; while percentage (%) reduction of TPH and PAHs in soil was estimated from day 1 to the residual at day 240. Results: The test plants decreased significant amount of crude oil as revealed in TPH uptake in their roots and Stem. Mean amount and percentage Total Petroleum Hydrocarbon (TPH) uptake by Cyperus esculentus roots and stem were; 152.33±50.34mg/kg, 12.57±4.16% and 201.13±8.80mg/kg, 13.27±0.58% respectively; while that of Phyllanthus amarusroots and stem were 141.50±35.62mg/kg, 11.68±2.94% and 174.44±19.98mg/kg, 11.51±1.32% respectively; revealing higher Uptake of TPH in plant stem than roots. From the initial TPH contamination value of 5503.00mg/kg, it was observed that plots planted with Cyperus esculentus (TPH 5492.75±76.36mg/kg) showed higher reduction of TPH from soil than those planted with Phyllanthus amarus(TPH 5449.72±18.27mg/kg); while PAHs degradation/reduction showed a reverse trend with plots planted with Phyllanthus amarus (PAHs 28.72±2.74mg/kg; 60.46±5.77%) higher than plots planted with Cyperus esculentus s (PAHs 25.77±2.12mg/kg, 54.24±4.47%). Conclusion: Plots planted with Cyperus esculentus showed higher reduction of TPH from soil than those planted with Phyllanthus amarus while PAHs degradation/reduction in plots planted with Phyllanthus amarus was higher than plots planted with Cyperus esculentus. TPH uptake was higher in plant stems than roots; more so, plots amended with nutrient supplements showed significant higher percentage reduction in hydrocarbon in the polluted soil than unamended polluted soil. It is therefore recommended that Cyperus esculentus is a suitable plant species for phytoremediation of crude oil contaminated soil with high TPH value while Phyllanthus amarusis the best option in phytoremediation of polluted soil with high PAHs value, both in combination with bio-nutrient supplement.


Sign in / Sign up

Export Citation Format

Share Document