scholarly journals Exploring the impact of glutathione S-transferase (GST)-based metabolic resistance to insecticide on vector competence of Anopheles funestus for Plasmodium falciparum

2019 ◽  
Vol 4 ◽  
pp. 52 ◽  
Author(s):  
Cyrille Ndo ◽  
Edmond Kopya ◽  
Helen Irving ◽  
Charles Wondji

Background: Malaria control heavily relies on insecticide-based interventions against mosquito vectors. However, the increasing spread of insecticide resistance is a major threat. The extent to which such resistance, notably metabolic resistance, influences the development of the Plasmodium parasite and its impact on overall malaria transmission remains poorly characterized. Here, we investigated whether glutathione S-transferase-based resistance could influence Plasmodium falciparum development in Anopheles funestus. Methods: Anopheles funestus females were infected with P. falciparum gametocytes and midguts were dissected at day 7 post infection for detection/quantification of oocysts. Infection parameters were compared between individuals with different L119F-GSTe2 genotypes, and the polymorphism of the GSTe2 gene was analyzed in infected and uninfected mosquito groups. Results: Overall, 403 An. funestus  mosquitoes were dissected and genotyped. The frequency of the L119F-GSTe2 resistance allele was significantly higher in non-infected (55.88%) compared to infected (40.99%) mosquitoes (Fisher's exact test, P<0.0001). Prevalence of infection was significantly higher in heterozygous and homozygous susceptible genotypes (P<0.001). However, homozygous resistant and heterozygous mosquitoes exhibited significantly higher infection intensity (P<0.01). No association was observed between the GSTe2 polymorphism and the infection status of mosquitoes. Conclusion: Altogether, these results suggest that GSTe2-based metabolic resistance may affect the vectorial competence of resistant An. funestus mosquitoes to P. falciparum infection, by possibly increasing its permissiveness to Plasmodium infection.

2019 ◽  
Vol 4 ◽  
pp. 52 ◽  
Author(s):  
Cyrille Ndo ◽  
Edmond Kopya ◽  
Helen Irving ◽  
Charles Wondji

Background: Malaria control heavily relies on insecticide-based interventions against mosquito vectors. However, the increasing spread of insecticide resistance is a major threat. The extent to which such resistance, notably metabolic resistance, interferes with the development of the Plasmodium parasite and its impact on overall malaria transmission remains poorly characterized. Here, we investigated whether glutathione S-transferase-based resistance could influence Plasmodium falciparum development in Anopheles funestus. Methods: Anopheles funestus females were infected with P. falciparum gametocytes and midguts were dissected at day 7 post infection for detection/quantification of oocysts. Infection parameters were compared between individual with different L119F-GSTe2 genotypes, and the polymorphism of the GSTe2 gene was analyzed in infected and uninfected mosquito groups. Results: Overall, 403 mosquitoes were dissected and genotyped. The frequency of the L119F-GSTe2 resistance allele was significantly higher in non-infected (55.88%) compared to infected (40.99%) mosquitoes (Fisher's exact test, P<0.0001). Prevalence of infection was significantly higher in heterozygous and homozygous susceptible genotypes (P<0.001). However, homozygous resistant and heterozygous mosquitoes exhibited significantly higher infection intensity (P<0.01). No association was observed between the GSTe2 polymorphism and the infection status of mosquitoes. Conclusion: Altogether, these results suggest that GSTe2-based metabolic resistance may affect the vectorial competence of resistant An. funestus mosquitoes to P. falciparum infection, by increasing its permissiveness to Plasmodium infection.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 143 ◽  
Author(s):  
Benjamin D. Menze ◽  
Mersimine F. Kouamo ◽  
Murielle J. Wondji ◽  
Williams Tchapga ◽  
Micareme Tchoupo ◽  
...  

Growing insecticide resistance in malaria vectors is threatening the effectiveness of insecticide-based interventions, including Long Lasting Insecticidal Nets (LLINs). However, the impact of metabolic resistance on the effectiveness of these tools remains poorly characterized. Using experimental hut trials and genotyping of a glutathione S-transferase resistance marker (L119F-GSTe2), we established that GST-mediated resistance is reducing the efficacy of LLINs against Anopheles funestus. Hut trials performed in Cameroon revealed that Piperonyl butoxide (PBO)-based nets induced a significantly higher mortality against pyrethroid resistant An. funestus than pyrethroid-only nets. Blood feeding rate and deterrence were significantly higher in all LLINs than control. Genotyping the L119F-GSTe2 mutation revealed that, for permethrin-based nets, 119F-GSTe2 resistant mosquitoes have a greater ability to blood feed than susceptible while the opposite effect is observed for deltamethrin-based nets. For Olyset Plus, a significant association with exophily was observed in resistant mosquitoes (OR = 11.7; p < 0.01). Furthermore, GSTe2-resistant mosquitoes (cone assays) significantly survived with PermaNet 2.0 (OR = 2.1; p < 0.01) and PermaNet 3.0 (side) (OR = 30.1; p < 0.001) but not for Olyset Plus. This study shows that the efficacy of PBO-based nets (e.g., blood feeding inhibition) against pyrethroid resistant malaria vectors could be impacted by other mechanisms including GST-mediated metabolic resistance not affected by the synergistic action of PBO. Mosaic LLINs incorporating a GST inhibitor (diethyl maleate) could help improve their efficacy in areas of GST-mediated resistance.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 645 ◽  
Author(s):  
Magellan Tchouakui ◽  
Jacob M. Riveron ◽  
Doumani Djonabaye ◽  
Williams Tchapga ◽  
Helen Irving ◽  
...  

Metabolic resistance to insecticides threatens malaria control. However, little is known about its fitness cost in field populations of malaria vectors, thus limiting the design of suitable resistance management strategies. Here, we assessed the association between the glutathione S-transferase GSTe2-mediated metabolic resistance and life-traits of natural populations of Anopheles funestus. A total of 1200 indoor resting blood-fed female An. funestus (F0) were collected in Mibellon, Cameroon (2016/2017), and allowed to lay eggs individually. Genotyping of F1 mosquitoes for the L119F-GSTE2 mutation revealed that L/L119-homozygote susceptible (SS) mosquitoes significantly laid more eggs than heterozygotes L119F-RS (odds ratio (OR) = 2.06; p < 0.0001) and homozygote resistant 119F/F-RR (OR = 2.93; p < 0.0001). L/L119-SS susceptible mosquitoes also showed the higher ability for oviposition than 119F/F-RR resistant (OR = 2.68; p = 0.0002) indicating a reduced fecundity in resistant mosquitoes. Furthermore, L119F-RS larvae developed faster (nine days) than L119F-RR and L119F-SS (11 days) (X2 = 11.052; degree of freedom (df) = 4; p = 0.02) suggesting a heterozygote advantage effect for larval development. Interestingly, L/L119-SS developed faster than 119F/F-RR (OR = 5.3; p < 0.0001) revealing an increased developmental time in resistant mosquitoes. However, genotyping and sequencing revealed that L119F-RR mosquitoes exhibited a higher adult longevity compared to RS (OR > 2.2; p < 0.05) and SS (OR > 2.1; p < 0.05) with an increased frequency of GSTe2-resistant haplotypes in mosquitoes of D30 after adult emergence. Additionally, comparison of the expression of GSTe2 revealed a significantly increased expression from D1-D30 after emergence of adults (Anova test (F) = 8; df= 3; p = 0.008). The negative association between GSTe2 and some life traits of An. funestus could facilitate new resistance management strategies. However, the increased longevity of GSTe2-resistant mosquitoes suggests that an increase in resistance could exacerbate malaria transmission.


2019 ◽  
Vol 4 ◽  
pp. 13 ◽  
Author(s):  
Magellan Tchouakui ◽  
Billy Tene Fossog ◽  
Brigitte Vanessa Ngannang ◽  
Doumani Djonabaye ◽  
Williams Tchapga ◽  
...  

Background: Metabolic resistance is a serious challenge to current insecticide-based interventions. The extent to which it affects natural populations of mosquitoes including their reproduction ability remains uncharacterised. Here, we investigated the potential impact of the glutathione S-transferase L119F-GSTe2 resistance on the mating competitiveness of male Anopheles funestus, in Cameroon. Methods: Swarms and indoor resting collections took place in March, 2018 in Tibati, Cameroon. WHO tube and cone assays were performed on F1 mosquitoes from indoor collected females to assess the susceptibility profile of malaria vectors. Mosquitoes mated and unmated males collected in the swarms were genotyped for the L119F metabolic marker to assess its association with mating male competitiveness. Results: Susceptibility and synergist assays, showed that this population was multiple resistant to pyrethroids, DDT and carbamates, likely driven by metabolic resistance mechanisms. Cone assays revealed a reduced efficacy of standard pyrethroid-nets (Olyset and PermaNet 2.0) with low mortality (<25%) whereas synergist PBO-Nets (Olyset Plus and PermaNet 3.0) retained greater efficacy with higher mortality (>80%). The L119F-GSTe2 mutation, conferring pyrethroid/DDT resistance, was detected in this An. funestus population at a frequency of 28.8%. In addition, a total of 15 mating swarms were identified and 21 An. funestus couples were isolated from those swarms.  A comparative genotyping of the L119F-GSTe2 mutation between mated and unmated males revealed that heterozygote males 119L/F-RS were less able to mate than homozygote susceptible (OR=7.2, P<0.0001). Surprisingly, heterozygote mosquitoes were also less able to mate than homozygote resistant (OR=4.2, P=0.010) suggesting the presence of a heterozygote disadvantage effect. Overall, mosquitoes bearing the L119-S susceptible allele were significantly more able to mate than those with 119F-R resistant allele (OR=2.1, P=0.03). Conclusion: This study provides preliminary evidences that metabolic resistance potentially exerts a fitness cost on mating competiveness in resistant mosquitoes.


Heredity ◽  
2020 ◽  
Vol 124 (5) ◽  
pp. 621-632 ◽  
Author(s):  
Magellan Tchouakui ◽  
Jacob Riveron Miranda ◽  
Leon M. J. Mugenzi ◽  
Doumani Djonabaye ◽  
Murielle J. Wondji ◽  
...  

Abstract Metabolic resistance threatens the sustainability of pyrethroid-based malaria control interventions. Elucidating the fitness cost and potential reversal of metabolic resistance is crucial to design suitable resistance management strategies. Here, we deciphered the fitness cost associated with the CYP6P9a (P450-mediated metabolic resistance) in the major African malaria vector Anopheles funestus. Reciprocal crosses were performed between a pyrethroid susceptible (FANG) and resistant (FUMOZ-R) laboratory strains and the hybrid strains showed intermediate resistance. Genotyping the CYP6P9a-R resistance allele in oviposited females revealed that CYP6P9a negatively impacts the fecundity as homozygote susceptible mosquitoes (CYP6P9a-SS) lay more eggs than heterozygote (OR = 2.04: P = 0.01) and homozygote resistant mosquitoes. CYP6P9a also imposes a significant fitness cost on the larval development as homozygote resistant larvae (CYP6P9a-RR) developed significantly slower than heterozygote and homozygote susceptible mosquitoes (χ2 = 11.2; P = 0.0008). This fitness cost was further supported by the late pupation of homozygote resistant than susceptible mosquitoes (OR = 2.50; P < 0.01). However, CYP6P9a does not impact the longevity as no difference was observed in the life span of mosquitoes with different genotypes (χ2 = 1.6; P = 0.9). In this hybrid strain, a significant decrease of the resistant CYP6P9a-RR genotype was observed after ten generations (χ2 = 6.6; P = 0.01) suggesting a reversal of P450-based resistance in the absence of selection. This study shows that the P450-mediated metabolic resistance imposes a high fitness cost in malaria vectors supporting that a resistance management strategy based on rotation could help mitigate the impact of such resistance.


2020 ◽  
Vol 5 ◽  
pp. 183
Author(s):  
Jonathan Thornton ◽  
Bruno Gomes ◽  
Constância Ayres ◽  
Lisa Reimer

Background: Laboratory reared mosquito colonies are essential tools to understand insecticide action. However, they differ considerably from wild populations and from each other depending on their origin and rearing conditions, which makes studying the effects of specific resistance mechanisms difficult. This paper describes our methods for establishing multiple resistant strains of Aedes aegypti from two colonies as a new resource for further research on metabolic and target site resistance. Methods: Two resistant colonies of Ae. aegypti, from Cayman and Recife, were selected through 10 generations of exposure to insecticides including permethrin, malathion and temephos, to yield eight strains with different profiles of resistance due to either target site or metabolic resistance. Resistance ratios for each insecticide were calculated for the selected and unselected strains. The frequency of kdr alleles in the Cayman strains was determined using TaqMan assays. A comparative gene expression analysis among Recife strains was conducted using qPCR in larvae (CCae3A, CYP6N12, CYP6F3, CYP9M9) and adults (CCae3A, CYP6N12, CYP6BB2, CYP9J28a). Results: In the selected strain of Cayman, mortality against permethrin reduced almost to 0% and kdr became fixated by 5 generations. A similar phenotype was seen in the unselected homozygous resistant colony, whilst mortality in the susceptible homozygous colony rose to 82.9%. The Recife strains showed different responses between exposure to adulticide and larvicide, with detoxification genes in the temephos selected strain staying similar to the baseline, but a reduction in detoxification genes displayed in the other strains. Conclusions: These selected strains, with a range of insecticide resistance phenotypes and genotypes, will support further research on the effects of target-site and/or metabolic resistance mechanisms on various life-history traits, behaviours and vector competence of this important arbovirus vector.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Leon M. J. Mugenzi ◽  
Benjamin D. Menze ◽  
Magellan Tchouakui ◽  
Murielle J. Wondji ◽  
Helen Irving ◽  
...  

Abstract Elucidating the genetic basis of metabolic resistance to insecticides in malaria vectors is crucial to prolonging the effectiveness of insecticide-based control tools including long lasting insecticidal nets (LLINs). Here, we show that cis-regulatory variants of the cytochrome P450 gene, CYP6P9b, are associated with pyrethroid resistance in the African malaria vector Anopheles funestus. A DNA-based assay is designed to track this resistance that occurs near fixation in southern Africa but not in West/Central Africa. Applying this assay we demonstrate, using semi-field experimental huts, that CYP6P9b-mediated resistance associates with reduced effectiveness of LLINs. Furthermore, we establish that CYP6P9b combines with another P450, CYP6P9a, to additively exacerbate the reduced efficacy of insecticide-treated nets. Double homozygote resistant mosquitoes (RR/RR) significantly survive exposure to insecticide-treated nets and successfully blood feed more than other genotypes. This study provides tools to track and assess the impact of multi-gene driven metabolic resistance to pyrethroids, helping improve resistance management.


2020 ◽  
Vol 5 ◽  
pp. 183
Author(s):  
Jonathan Thornton ◽  
Bruno Gomes ◽  
Constância Ayres ◽  
Lisa Reimer

Background: Laboratory reared mosquito colonies are essential tools to understand insecticide action. However, they differ considerably from wild populations and from each other depending on their origin and rearing conditions, which makes studying the effects of specific resistance mechanisms difficult. This paper describes our methods for establishing multiple resistant strains of Aedes aegypti from two colonies as a new resource for further research on metabolic and target site resistance. Methods: Two resistant colonies of Ae. aegypti, from Cayman and Recife, were selected through 10 generations of exposure to insecticides including permethrin, malathion and temephos, to yield eight strains with different profiles of resistance due to either target site or metabolic resistance. Resistance ratios for each insecticide were calculated for the selected and unselected strains. The frequency of kdr alleles (F1534C and V1016I) in the Cayman strains was determined using TaqMan assays. A comparative gene expression analysis among Recife strains was conducted using qPCR in larvae (CCae3A, CYP6N12, CYP6F3, CYP9M9) and adults (CCae3A, CYP6N12, CYP6BB2, CYP9J28a). Results: In the selected strain of Cayman, mortality against permethrin reduced almost to 0% and kdr became fixated by 5 generations. A similar phenotype was seen in the unselected homozygous resistant colony, whilst mortality in the susceptible homozygous colony rose to 82.9%. The Recife strains showed different responses between exposure to adulticide and larvicide, with detoxification genes in the temephos selected strain staying similar to the baseline, but a reduction in detoxification genes displayed in the other strains. Conclusions: These selected strains, with a range of insecticide resistance phenotypes and genotypes, will support further research on the effects of target-site and/or metabolic resistance mechanisms on various life-history traits, behaviours and vector competence of this important arbovirus vector.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Rosine Z. Wolie ◽  
Alphonsine A. Koffi ◽  
Ludovic P. Ahoua Alou ◽  
Eleanore D. Sternberg ◽  
Oulo N’Nan-Alla ◽  
...  

Abstract Background There is evidence that the knockdown resistance gene (Kdr) L1014F and acetylcholinesterase-1 gene (Ace-1R) G119S mutations involved in pyrethroid and carbamate resistance in Anopheles gambiae influence malaria transmission in sub-Saharan Africa. This is likely due to changes in the behaviour, life history and vector competence and capacity of An. gambiae. In the present study, performed as part of a two-arm cluster randomized controlled trial evaluating the impact of household screening plus a novel insecticide delivery system (In2Care Eave Tubes), we investigated the distribution of insecticide target site mutations and their association with infection status in wild An. gambiae sensu lato (s.l.) populations. Methods Mosquitoes were captured in 40 villages around Bouaké by human landing catch from May 2017 to April 2019. Randomly selected samples of An. gambiae s.l. that were infected or not infected with Plasmodium sp. were identified to species and then genotyped for Kdr L1014F and Ace-1R G119S mutations using quantitative polymerase chain reaction assays. The frequencies of the two alleles were compared between Anopheles coluzzii and Anopheles gambiae and then between infected and uninfected groups for each species. Results The presence of An. gambiae (49%) and An. coluzzii (51%) was confirmed in Bouaké. Individuals of both species infected with Plasmodium parasites were found. Over the study period, the average frequency of the Kdr L1014F and Ace-1R G119S mutations did not vary significantly between study arms. However, the frequencies of the Kdr L1014F and Ace-1R G119S resistance alleles were significantly higher in An. gambiae than in An. coluzzii [odds ratio (95% confidence interval): 59.64 (30.81–131.63) for Kdr, and 2.79 (2.17–3.60) for Ace-1R]. For both species, there were no significant differences in Kdr L1014F or Ace-1R G119S genotypic and allelic frequency distributions between infected and uninfected specimens (P > 0.05). Conclusions Either alone or in combination, Kdr L1014F and Ace-1R G119S showed no significant association with Plasmodium infection in wild An. gambiae and An. coluzzii, demonstrating the similar competence of these species for Plasmodium transmission in Bouaké. Additional factors including behavioural and environmental ones that influence vector competence in natural populations, and those other than allele measurements (metabolic resistance factors) that contribute to resistance, should be considered when establishing the existence of a link between insecticide resistance and vector competence. Graphical Abstract


2019 ◽  
Vol 4 ◽  
pp. 13 ◽  
Author(s):  
Magellan Tchouakui ◽  
Billy Tene Fossog ◽  
Brigitte Vanessa Ngannang ◽  
Doumani Djonabaye ◽  
Williams Tchapga ◽  
...  

Background: Metabolic resistance is a serious challenge to current insecticide-based interventions. The extent to which it affects natural populations of mosquitoes including their reproduction ability remains uncharacterised. Here, we investigated the potential impact of the glutathione S-transferase L119F-GSTe2 resistance on the mating competitiveness of male Anopheles funestus, in Cameroon. Methods: Swarms and indoor resting collections took place in March, 2018 in Tibati, Cameroon. WHO tube and cone assays were performed on F1 mosquitoes from indoor collected females to assess the susceptibility profile of malaria vectors. Mosquitoes mated and unmated males collected in the swarms were genotyped for the L119F metabolic marker to assess its association with mating male competitiveness. Results: Susceptibility and synergist assays, showed that this population was multiple resistant to pyrethroids, DDT and carbamates, likely driven by metabolic resistance mechanisms. Cone assays revealed a reduced efficacy of standard pyrethroid-nets (Olyset and PermaNet 2.0) with low mortality (<25%) whereas synergist PBO-Nets (Olyset Plus and PermaNet 3.0) retained greater efficacy with higher mortality (>80%). The L119F-GSTe2 mutation, conferring pyrethroid/DDT resistance, was detected in this An.funestus population at a frequency of 28.8%. In addition, a total of 15 mating swarms were identified and 21 An. funestus couples were isolated from those swarms.  A comparative genotyping of the L119F-GSTe2 mutation between mated and unmated males revealed that heterozygote males 119L/F-RS were less able to mate than homozygote susceptible (OR=7.2, P<0.0001). Surprisingly, heterozygote mosquitoes were also less able to mate than homozygote resistant (OR=4.2, P=0.010) suggesting the presence of a heterozygote disadvantage effect. Overall, mosquitoes bearing the L119-S susceptible allele were significantly more able to mate than those with 119F-R resistant allele (OR=2.1, P=0.03). Conclusion: This study provides preliminary evidences that metabolic resistance potentially exerts a fitness cost on mating competiveness in resistant mosquitoes.


Sign in / Sign up

Export Citation Format

Share Document