scholarly journals Evaluation of genetic potential for various traits in maize hybrids (Zea mays L.) extracted from crosses with CIMMYT germplasm

Author(s):  
Maciej T. Grzesiak ◽  
Anna Maksymowicz ◽  
Barbara Jurczyk ◽  
Tomasz Hura ◽  
Grzegorz Rut ◽  
...  

2016 ◽  
Vol 11 (42) ◽  
pp. 4206-4213 ◽  
Author(s):  
Qayyum Abdul ◽  
Muhammad Saeed Hafiz ◽  
Hanif Mamoona ◽  
Noor Etrat ◽  
Malik Waqas ◽  
...  

1991 ◽  
Vol 71 (4) ◽  
pp. 1021-1027 ◽  
Author(s):  
M. Tollenaar ◽  
M. Mihajlovic

Genetic grain yield improvement of maize (Zea mays L.) in Ontario during the past three decades can be attributed, in part, to increased tolerance to environmental stresses. We have observed a differential response of field-grown old and new hybrids after application of the photosystem II inhibiting herbicide bromoxynil (4-hydroxy-3,5-dibromobenzonitrile). Studies were conducted to test whether tolerance to bromoxynil is associated with stress tolerance and grain yield in maize hybrids representing three decades of yield improvement in Ontario. Experiments were carried out with seedlings of eight maize hybrids grown in pots in controlled-environment growth cabinets and, in one experiment, with seedlings grown in pots outside during the months of July and August at Guelph, Ontario. Bromoxynil was applied to the youngest fully-expanded leaf of plants at the 6- to 8-leaf stage and chlorophyll fluorescence of the treated leaves was measured in the 2- to 24-h period after bomoxynil application. Results showed that the chlorophyll fluorescence ratio Fv/Fm, an indicator of photosynthetic efficiency, declined after bromoxynil application until 4 h after application and, subsequently, recovered slightly during the next 20 h. Large differences in the Fv/Fm ratio were apparent among hybrids in the response to bromoxynil. The Fv/Fm ratio was significantly higher for hybrids released in the 1980s than for hybrids released in the 1970s, and the Fv/Fm ratio of the latter group was significantly higher than that of the four oldest hybrids. Chlorophyll fluorescence ratios Fv/Fm after bromoxynil application in the seedling phase were highly correlated with grain yield of the hybrids in field experiments conducted during 1987 and 1988 (r = 0.91). Results of this study support the contention that maize genotypes that are less sensitive to bromoxynil are less susceptible to environmental stresses. Key words: Zea mays L., stress tolerance, bromoxynil, chlorophyll fluorescence, Fv/Fm ratio, detoxifying agents


Euphytica ◽  
2011 ◽  
Vol 182 (3) ◽  
pp. 377-393 ◽  
Author(s):  
Frank Kagoda ◽  
John Derera ◽  
Pangirayi Tongoona ◽  
Daniel L. Coyne ◽  
J. Lorenzen

Author(s):  
B. Manjunatha ◽  
B. Niranjana Kumara ◽  
G.B. Jagadeesh

Scientifica ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Seyed Habib Shojaei ◽  
Khodadad Mostafavi ◽  
Ali Omrani ◽  
Saeed Omrani ◽  
Seyed Mohammad Nasir Mousavi ◽  
...  

The present study investigated the stability and adaptability of maize (Zea mays L.) hybrids. In this study, 12 maize hybrids were planted and examined considering the grain yield. The experiment was arranged in a randomized complete block design (RCBD) with three replications in four research stations in Iran during two crop years. The combined analysis of variance showed that genotype-environment interactions were significant at one percent probability level. The grain yield can stabilize, and hybrids with specific adaptability are recommended to each environment. Hybrids with specific adaptability can be recommended to all types of the environment. Means comparison yield of the genotypes identified DC370 as a high-yield genotype. Regarding AMMI analysis, genotype × environment interactions (GEIs) and two first components were found significant. The SC647 genotype was identified as the most stable genotype. Regarding the stability parameters, SC647 and KSC705 genotypes were selected as the most stable genotypes. From AMMI1 and AMMI2 graphs, the SC647 genotype was identified as the most stable genotype compared with other hybrids.


2010 ◽  
Vol 61 (9) ◽  
pp. 700 ◽  
Author(s):  
Saeed Safari Dolatabad ◽  
Rajab Choukan ◽  
Eslam Majidi Hervan ◽  
Hamid Dehghani

Adapted maize (Zea mays L.) hybrids should be identified and chosen based on multi-environment trials analysing several traits. The objectives of this study were to identify mega-environments and suitable adapted maize hybrids based on both mean grain yield and grain yield stability and were to evaluate the 14 maize hybrids based on several desirable traits. Biplot analysis determined one mega-environment and two sectors that consist of one location in each sector for maize in Iran. The mega-environment included Kerman (KRM), Kermanshah (KSH), Moghan (MGN), Dezfol A (DZF A), Karaj (KRJ), Darab (DRB), Dezfol B (DZF B), Shiraz B (SHZ B), and Esfahan (ESF), where hybrid OSSK 602 was the best performing hybrid. The first sector included Khoramabad (KHM) where BC 678 was the best hybrid, and the second sector included Shiraz A (SHZ A) where ZP 599 was the hybrid with the highest performance. OSSK 602 was the best hybrid among all of the studied hybrids followed by ZP 677 and ZP 684. The genotype × trait biplot indicated that ZP 677 and OSSK 602 had greater thousand-kernel weight and grain number, whereas ZP 684 had longer day to maturity and larger cob diameter. KSC 700, KSC 704, and BC 678 had higher ear height and more days to tasseling than other hybrids. The genotype × trait biplot graphically displayed the interrelationships among traits and it was used in identifying hybrids that are good for some particular traits.


2009 ◽  
Vol 89 (6) ◽  
pp. 1041-1045 ◽  
Author(s):  
W Jiang ◽  
K Wang ◽  
G Jiang ◽  
Q Wu ◽  
J Zhang ◽  
...  

We conducted an experiment with two maize hybrids (Zea mays L.) to examine the effect of interplant root competition on root growth and to evaluate the impact to total plant performance. Two maize hybrids (Jinhai 5 and Denghai 3719) were grown either with no root competition in their own plot (owners) or as individuals sharing twice the space and nutrients (sharers). Plants were sampled every other week after pollination to track changes in root and shoot biomass. The carbohydrate allocation was smaller in the roots of sharers compared with owners at the pro-phase of grain filling and shoot accumulation was slightly accelerated during this period. However, at the lag phase, the accumulation rate in the shoots of individual plants was distinctly lower than in owners, as a result of earlier root senescence. Overall, shoot mass was reduced by 8% in sharers of both hybrids, while they showed a similar root to shoot ratio compared with the owners. Although the “sharing” treatment was confounded by larger soil spaces, the effects of larger soil volume and interplant root competition were different, and demonstrate that interplant root competition has an inhibitory effect on roots. Maize plants displayed an overcrowding effect (or an escape strategy) by allocating more carbohydrate to the shoots at the expense of the roots when faced with interplant root competition.Key words: Overcrowding effect, interplant root competition, maize (zea mays L.), root discrimination


Sign in / Sign up

Export Citation Format

Share Document