scholarly journals Breeding of Candidate Lines for Male Sterility-Maintainer by Anther Culture for Hybrid Wheat Production Using an Sv Type Cytoplasm and a 1BL-1RS Chromosome.

1994 ◽  
Vol 44 (1) ◽  
pp. 23-28
Author(s):  
Takiko Shimada ◽  
Kunio Toriyama ◽  
Koichiro Tsunewaki ◽  
Shunji Nonaka ◽  
Takato Koba ◽  
...  
Genetics ◽  
1983 ◽  
Vol 104 (1) ◽  
pp. 181-189
Author(s):  
M A Hossain ◽  
C J Driscoll

ABSTRACT The genome of rye is known to compensate for the lost male-fertility gene(s) of wheat chromosome arm 4Aα in the Cornerstone male-sterility mutant. A search for the rye chromosome(s) involved in this compensation showed that chromosomes 2R and 4R are responsible. Only the short arms of these two chromosomes are the operative ones. Chromosome arm 4RS compensates in an erratic way, whereas 2RS compensates in a full and consistent way. The entire chromosome 2R compensates less well than the 2RS telocentric which reflects an antifertility factor(s) on 2RL. This may be a specific expression of the 2R genes for poor vigor which are located on only the long arm. 2RS will be a valuable piece of chromatin for the XYZ system of producing hybrid wheat.


2017 ◽  
Vol 114 (47) ◽  
pp. 12614-12619 ◽  
Author(s):  
Zheng Wang ◽  
Jian Li ◽  
Shaoxia Chen ◽  
Yanfang Heng ◽  
Zhuo Chen ◽  
...  

Male sterility is an essential trait in hybrid seed production for monoclinous crops, including rice and wheat. However, compared with the high percentage of hybrid rice planted in the world, little commercial hybrid wheat is planted globally as a result of the lack of a suitable system for male sterility. Therefore, understanding the molecular nature of male fertility in wheat is critical for commercially viable hybrid wheat. Here, we report the cloning and characterization of Male Sterility 1 (Ms1) in bread wheat by using a combination of advanced genomic approaches. MS1 is a newly evolved gene in the Poaceae that is specifically expressed in microsporocytes, and is essential for microgametogenesis. Orthologs of Ms1 are expressed in diploid and allotetraploid ancestral species. Orthologs of Ms1 are epigenetically silenced in the A and D subgenomes of allohexaploid wheat; only Ms1 from the B subgenome is expressed. The encoded protein, Ms1, is localized to plastid and mitochondrial membranes, where it exhibits phospholipid-binding activity. These findings provide a foundation for the development of commercially viable hybrid wheat.


2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is currently the most promising approach for wheat heterosis utilization in China. However, during past twenty years only few TPSGMS lines were developed in hybrid wheat breeding, which has been the main limiting factor to create heterotic hybrids. Application of doubled haploid (DH) breeding provides a useful strategy to efficiently develop practically usable TPSGMS lines. Results: F1s and selected F2 and F3 sterile plants of eight crosses made from two commercial TPSGMS lines were used to produce DH lines. We developed a total of 24 elite DH sterile lines with stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, as well as desirable plant height (50-60 cm). These DH lines were developed within 4 years through at least one year of evaluation. The stability of male sterility was confirmed for most (20/24) of these elite DH sterile lines by multiple tests in two or three years. These lines are expected to be used in hybrid wheat breeding. The percentage of elite lines developed from the tested DH lines produced from filial generations was in the order of F2 > F3 > F1. Conclusions: We demonstrate that coupling DH techniques with conventional breeding is an efficient strategy for accelerating the development of more practical wheat TPSGMS lines. Generation of DHs from F2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanna Melonek ◽  
Jorge Duarte ◽  
Jerome Martin ◽  
Laurent Beuf ◽  
Alain Murigneux ◽  
...  

AbstractHybrid wheat varieties give higher yields than conventional lines but are difficult to produce due to a lack of effective control of male fertility in breeding lines. One promising system involves the Rf1 and Rf3 genes that restore fertility of wheat plants carrying Triticum timopheevii-type cytoplasmic male sterility (T-CMS). Here, by genetic mapping and comparative sequence analyses, we identify Rf1 and Rf3 candidates that can restore normal pollen production in transgenic wheat plants carrying T-CMS. We show that Rf1 and Rf3 bind to the mitochondrial orf279 transcript and induce cleavage, preventing expression of the CMS trait. The identification of restorer genes in wheat is an important step towards the development of hybrid wheat varieties based on a CMS-Rf system. The characterisation of their mode of action brings insights into the molecular basis of CMS and fertility restoration in plants.


2014 ◽  
Vol 37 (1) ◽  
Author(s):  
Sudhir P. Singh ◽  
Rakesh Srivastava ◽  
Jitendra Kumar

2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is currently the most promising approach for wheat heterosis utilization in China. However, during past twenty years only few TPSGMS lines were developed in hybrid wheat breeding, which has been the main limiting factor to create heterotic hybrids. Application of doubled haploid (DH) breeding provides a useful strategy to efficiently develop practically usable TPSGMS lines.Results: F1s and selected F2 and F3 sterile plants of eight crosses made from two commercial TPSGMS lines were used to produce DH lines. We developed a total of 24 elite DH sterile lines with stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, as well as desirable plant height (50-60 cm). These DH lines were developed within 4 years through at least one year of evaluation. The stability of male sterility was confirmed for most (20/24) of these elite DH sterile lines by multiple tests in two or three years. These lines are expected to be used in hybrid wheat breeding. The percentage of elite lines developed from the tested DH lines produced from filial generations was in the order of F2 > F3 > F1.Conclusions: We demonstrate that coupling DH techniques with conventional breeding is an efficient strategy for accelerating the development of more practical wheat TPSGMS lines. Generation of DHs from F2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


Sign in / Sign up

Export Citation Format

Share Document