scholarly journals Deep Learning-Based Object Recognition in Video Sequences

2022 ◽  
Vol 11 (1) ◽  
pp. 177-186
Author(s):  
Ashwith A ◽  
Azra Nasreen ◽  
Shobha G ◽  
Sitharama Iyengar ◽  
Anurag Sethuram
2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.


2020 ◽  
Vol 28 (6) ◽  
pp. 1123-1139
Author(s):  
Liqun Zhang ◽  
Ke Chen ◽  
Lin Han ◽  
Yan Zhuang ◽  
Zhan Hua ◽  
...  

BACKGROUND: Calcification is an important criterion for classification between benign and malignant thyroid nodules. Deep learning provides an important means for automatic calcification recognition, but it is tedious to annotate pixel-level labels for calcifications with various morphologies. OBJECTIVE: This study aims to improve accuracy of calcification recognition and prediction of its location, as well as to reduce the number of pixel-level labels in model training. METHODS: We proposed a collaborative supervision network based on attention gating (CS-AGnet), which was composed of two branches: a segmentation network and a classification network. The reorganized two-stage collaborative semi-supervised model was trained under the supervision of all image-level labels and few pixel-level labels. RESULTS: The results show that although our semi-supervised network used only 30% (289 cases) of pixel-level labels for training, the accuracy of calcification recognition reaches 92.1%, which is very close to 92.9% of deep supervision with 100% (966 cases) pixel-level labels. The CS-AGnet enables to focus the model’s attention on calcification objects. Thus, it achieves higher accuracy than other deep learning methods. CONCLUSIONS: Our collaborative semi-supervised model has a preferable performance in calcification recognition, and it reduces the number of manual annotations of pixel-level labels. Moreover, it may be of great reference for the object recognition of medical dataset with few labels.


Sign in / Sign up

Export Citation Format

Share Document