Design of Water Level Sensor with Two-Pairs Capacitor

2013 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
Seiichi Serikawa ◽  
Yuhki Kitazono ◽  
Huimin Lu ◽  
Akira Yamawaki ◽  
Makoto Miyauchi
Keyword(s):  
2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Fina Supegina

Hydroponics is one of planting method that use water as a medium of plants growth, in this technique, mineral solution added into the water solvent, allowing the nutrient uptake process by the plants.  Farming by hydroponic method must pay attention to the following parameters namely, temperature, humidity, the level of water needs and nutrients and also the level of sunlight need for photosynthesis process.  This research used hydroponic technique in hydroponic growth room, and  there is a LED growth light as an alternate of sunlight, due to this room is closed without sunlight.  There are outputs displayed in monitoring system namely, temperature sensor, humidity sensor, ultrasound sensor to detect height of the plant and water level sensor to measured height of the water as a medium of the plant.  Results of measured sensor in hydroponic growth room explained as the following:  fan cooler worked when temperature , and humidity  .  Water pump worked when water level is less than 50% accordance set point.  Control on LED Growth Light and LED Bulb when LDR sensor reached set point > 500 in bright condition, and < 500 in dark condition respectively. The average of Time update/received data in thing speak web is 2.4 second. Keywords: Smart Control, Hydroponic, IoT, Monitoring


Author(s):  
J S Ashwin ◽  
N Manoharan

An embedded based power plant system is used for checking the environmental condition based on different sensor. The microcontroller is fixed inside the boiler which is a turbine, to monitor the status and the information is passed through GSM. In this project we proposed the main water tank supplies number of boilers. The water level is controlled by a water level sensor, each evaporator has two channels, one is delta other one is outlet and the channels' valves are controlled by some temperature sensors composed in each package. From the GSM modem, the user will get the present status of the boiler level by sending a radiator ID number as message. When the temperature inside the boiler exceed the threshold value it will indicate as a warning to the concerned authority person to take the immediate step.


2021 ◽  
Vol 1 (1) ◽  
pp. 53-64
Author(s):  
Lukman Medriavin Silalahi ◽  
Setiyo Budiyanto ◽  
Freddy Artadima Silaban ◽  
Arif Rahman Hakim

Irrigation door is a big issue for farmers. The factor that became a hot issue at the irrigation gate was the irresponsible attitude of the irrigation staff regarding the schedule of opening/closing the irrigation door so that it caused the rice fields to becoming dry or submerged. In this research, an automatic prototype system for irrigation system will be designed based on integrating several sensors, including water level sensors, soil moisture sensors, acidity sensors. This sensor output will be displayed on Android-based applications. The integration of communication between devices (Arduino Nano, Arduino Wemos and sensors supporting the irrigation system) is the working principle of this prototype. This device will control via an Android-based application to turn on / off the water pump, to open/close the irrigation door, check soil moisture, soil acidity in real time. The pump will automatically turn on based on the water level. This condition will be active if the water level is below 3cm above ground level. The output value will be displayed on the Android-based application screen and LCD screen. Based on the results of testing and analysis of the prototype that has been done in this research, the irrigation door will open automatically when the soil is dry. This condition occurs if the water level is less than 3 cm. The calibrated Output value, including acidity sensor, soil moisture sensor and water level sensor, will be sent to the server every 5 seconds and forwarded to an Android-based application as an output display.


2020 ◽  
Vol 4 (1) ◽  
pp. 230-235
Author(s):  
Novianda Nanda Nanda ◽  
Rizalul Akram ◽  
Liza Fitria

During the rainy season, several regions in Indonesia experienced floods even to the capital of Indonesia also flooded. Some of the causes are the high intensity of continuous rain, clogged or non-smooth drainage, high tides to accommodate the flow of water from rivers, other causes such as forest destruction, shallow and full of garbage and other causes. Every flood disaster comes, often harming the residents who experience it. The late anticipation from the community and the absence of an early warning system or information that indicates that there will be a flood so that the community is not prepared to face floods that cause a lot of losses. Therefore it is necessary to have a detection system to provide early warning if floods will occur, this is very important to prevent material losses from flooded residents. From this problem the researchers designed an internet-based flood detection System of Things (IoT). This tool can later be controlled via a smartphone remotely and can send messages Telegram messenger to citizens if the detector detects a flood will occur.Keywords: Flooding, Smartphone, Telegram messenger, Internet of Thing (IoT).


1990 ◽  
Vol 37 (2) ◽  
pp. 1024-1031 ◽  
Author(s):  
K. Termaat ◽  
J. Kops ◽  
K. Ara ◽  
M. Katagiri ◽  
K. Kobayashi

2019 ◽  
Vol 8 (2) ◽  
pp. 450-459 ◽  
Author(s):  
Salami Ifedapo Abdullahi ◽  
Mohamed Hadi Habaebi ◽  
Noreha Abdul Malik

Water level sensors are one of the practical ways to get the actual measurement of the depth of a dam or canal. The ease of deployment and easy data acquisition makes them widely used in many fields. Therefore, it will be advantageous to have a miniaturized water level sensor for easier mobility and deployment. A novel method for measuring water level using a Printed Circuit Board has been proposed in this paper. The design stages of circuit sketching, printing of sketch on PCB and etching are discussed for the electrode water level sensor. A signal conditioning circuit is necessary to maintain a steady flow of current from the power source. The fabricated electrode water level sensor was tested based on its capacitive effect while charging up and the amount of current at each electrode finger at the saturation stage. The hardware enablers for this test were the multimeter and LCR meter. Arduino microprocessor was used to test and measure the transient response time for each electrode finger. The transient response sensitivity of the electrode sensor is measured to be 0.0873 millisecond/cm while the resolution of the electrode sensor is 0.1cm over a range of 30cm water level. A multiple correlation of 0.921 was achieved for the water level, measured current and measured capacitance with P-values less than 0.05 indicating strength of the data obtained from the tests conducted. The result showed strong evidence that the electrode water level sensor can be an alternative method of measuring water level.


Sign in / Sign up

Export Citation Format

Share Document