scholarly journals Bead-on-Plate Underwater Wet Welding on S700MC Steel

2021 ◽  
Vol 15 (3) ◽  
pp. 288-296
Author(s):  
Jacek Tomków ◽  
Aleksandra Świerczyńska ◽  
Michał Landowski ◽  
Adrian Wolski ◽  
Grzegorz Rogalski
2013 ◽  
Vol 690-693 ◽  
pp. 2621-2624
Author(s):  
Bo Chen ◽  
Ji Cai Feng

Underwater weld technology is urgently needed for the widely development of marine recourses, and weld automation technology is the inevitable choice because of the underwater environment. Because of the influence of the rigorous environment, the weld seam forming of underwater wet welding is very poor. To control the weld seam forming automatically, the model between the weld parameters and the weld seam shape must be built. This paper used arc sensor to monitor the electrical information of underwater wet welding process, and regression method was used to model the process, and the factors that influence the weld seam forming mostly were analyzed.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1249
Author(s):  
Maofu Zhang ◽  
Yanfei Han ◽  
Chuanbao Jia ◽  
Shengfa Dong ◽  
Sergii Maksimov ◽  
...  

In underwater wet welding, the unstable welding process caused by the generation and rupture of bubbles and the chilling effect of water on the welding area result in low quality of welded joints, which makes it difficult to meet the practical application of marine engineering. To improve the process stability and joining quality, a mixture of welding flux with a water glass or epoxy resin was placed on the welding zone before underwater welding. In this paper, welds’ appearance, geometry statistics of welds’ formation, welding process stability, slag structure, microstructure, pores and mechanical properties were investigated. It was found that with the addition of water glass in the mixture, the penetration of weld was effectively increased, and the frequency of arc extinction was reduced. Though the porosity rose to a relatively high level, the joints’ comprehensive mechanical properties were not significantly improved. Notably, the applied epoxy resin completely isolated the surrounding water from the welding area, which greatly improved process stability. Furthermore, it benefited from the microstructure filled with massive acicular ferrite, the average elongation and room temperature impact toughness increased by 178.4%, and 69.1% compared with underwater wet welding, respectively, and the bending angle of the joint reaches to 180°.


Author(s):  
Jianfeng Wang ◽  
Qingjie Sun ◽  
Jiangkun Ma ◽  
Peng Jin ◽  
Tianzhu Sun ◽  
...  

It is a great challenge to improve the process stability in conventional underwater wet welding due to the formation of unstable bubble. In this study, mechanical constraint method was employed to interfere the bubble generated by underwater wet welding, and the new method was named as mechanical constraint assisted underwater wet welding. The aim of the study was to quantify the combined effect of wire feed speed and condition of mechanical constraint on the process stability in mechanical constraint assisted underwater wet welding. Experimental results demonstrated that the introduction of mechanical constraint not only suppressed the bubble without floating but also stabilized the arc burning process. The degree of influence of mechanical constraint, which changed with wire feed speed, played an important role during the mechanical constraint assisted underwater wet welding process. For all wire feed speeds, the fluctuations of welding electrical signal were decreased through introduction of mechanical constraint. The difference in the proportion of arc extinction process between underwater wet welding and mechanical constraint assisted underwater wet welding became less with increasing wire feed speed. At wire feed speed lower than 7.5 m/min, the improvement of process stability was very significant by mechanical constraint. However, the further improvement produced limited effect when the wire feed speed was greater than 7.5 m/min. The observation results showed that a better weld appearance was afforded at a large wire feed speed, corresponding to a lower variation coefficient.


2020 ◽  
Vol 270 ◽  
pp. 127692 ◽  
Author(s):  
Hao Chen ◽  
Ning Guo ◽  
Zhihao Zhang ◽  
Cheng Liu ◽  
Li Zhou ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1715 ◽  
Author(s):  
Ning Guo ◽  
Lu Huang ◽  
Yongpeng Du ◽  
Qi Cheng ◽  
Yunlong Fu ◽  
...  

Underwater wet welding technology is widely used. Because the stability of droplet transfer in underwater wet welding is poor, the feasibility of improving the droplet transfer mode has been discussed from various technical directions. In this work, the characteristics of pulsating wire feeding were studied in the pulsating wire feeding mode by investigating the effects of changing the pulsating frequency, the wire withdrawal speed, and the wire withdrawal quantity on the droplet transfer process and the welding quality. With the aim of improving weld forming and welding stability, the authors selected the coefficient of variation and the ratio of unstable droplet transfer as the indexes to evaluate the effect of droplet transfer control. The pulsating wire feeding process of underwater wet flux-cored wire was analyzed in depth, and the following conclusions were drawn: using the pulsating wire feeding mode and after comparing and analyzing the pulsed wire feeding process under the same frequency condition, the authors found that the forming and stability were better under the conditions of slower withdrawal speed and smaller withdrawal quantity. The short-circuit transition ratio decreased steadily with the increase of pulsating wire feeding frequency, the rejection transition ratio first rose and then decreased, and the splash ratio first decreased and then rose.


1995 ◽  
Vol 117 (3) ◽  
pp. 212-220 ◽  
Author(s):  
A. Sanchez-Osio ◽  
S. Liu ◽  
D. L. Olson ◽  
S. Ibarra

The use of underwater wet welding for offshore repairs has been limited mainly because of porosity and low toughness in the resulting welds. With appropriate consumable design, however, it is possible to reduce porosity and to enhance weld metal toughness through microstructural refinement. New titanium and boron-based consumables have been developed with which high toughness acicular ferrite (AF) can be produced in underwater wet welds. Titanium, by means of oxide formation, promoted an increase in the amount of acicular ferrite in the weld metal, while boron additions decreased the amount of grain boundary ferrite (GBF), further improving the microstructure. Porosity reduction was possible through the addition of calcium carbonate at approximately 13 wt percent in the electrode coating. However, weld metal decarburization also resulted with the addition of carbonate.


Sign in / Sign up

Export Citation Format

Share Document