scholarly journals Succinic Acid As a Green and Bio-Based Catalyst assisted solvent-free one-pot Biginelli synthesis of biologically active 3,4-dihydropyrimidin-2-(1H)-ones/thiones derivatives

Author(s):  
Farzaneh Mohamadpour ◽  
◽  
Mansoor Feilizadeh ◽  
2020 ◽  
Vol 17 ◽  
Author(s):  
Afroz Aslam ◽  
Mehtab Parveen ◽  
Kushvendra Singh

Aim: To synthesize chromeno-pyrazolo[1,2-b]phthalazine-6,9,14(7H)-trione analogs with the help of silica-supported bismuth nitrate catalyst. Background: Nitrogen-containing heterocyclic compounds are widespread, and their applications to pharmaceuticals, agrochemicals, and functional materials are becoming more and more important. Pyrazoles are an important class of compounds for new drug development, as they are the core structure of numerous biologically active compounds, including blockbuster drugs such as celecoxib, viagra, pyrazofurine, and many others. Similarly, heterocycles containing a phthalazine moiety are of current interest due to their pharmacological and biological activities, for example, pyrazolo[1,2-b]phthalazinedione is described as an anti-inflammatory, analgesic, antihypoxic, and antipyretic agent. Objective: In continuation of our ongoing investigation for the construction of efficient and simple approaches for the preparation of heterogeneous catalysts herein we wish to disclose a highly efficient, simple, and one-pot synthesis of chromeno-pyrazolo-phthalazine derivatives via a one-pot multi-component reaction between 4-hydroxycoumarin, aromatic/heterocyclic aldehydes and 2,3-dihydro-1,4- phthalazinedione using silica-supported bismuth nitrate as an inexpensive, environmentally friendly and reusable catalysts under solvent-free conditions. Materials and Methods: Microanalytical data (C, H, and N) were collected on Carlo Erba analyzer model 1108. The microwave synthesis was performed in Anton Paar, Monowave 300 microwave synthesizer. Melting points were measured in open glass capillaries in the Kofler apparatus and may be uncorrected. Spectroscopic data were obtained using the following instruments: Fourier transform infrared spectra (KBr discs, 4000-400 cm-1 ) by Shimadzu IR-408 Perkin-Elmer 1800 instrument; 1H NMR and 13C NMR spectra by Bruker Avance-II 400 MHz using DMSO-d6 as a solvent containing TMS as the internal standard. Mass spectra were set down on a JEOL D-300 mass spectrometer. Results: To continue our ongoing studies to synthesize heterocyclic and pharmaceutical compounds by mild, facile, and efficient protocols, herein we wish to report our experimental results on the synthesis of chromeno-pyrazolo-phthalazine derivatives under solvent-free condition derivatives, using various aromatic/heterocyclic aldehydes in the presence of silica-supported bismuth nitrate catalyst. The prepared catalyst was characterized by various physical and chemical techniques. Conclusion: We have demonstrated an efficient reaction path for the synthesis of new aryl and heteroaryl chromeno-pyrazolo[1,2- b]phthalazine-6,9,14(7H)-trione by one-pot three-component condensation of aryl/heteroaryl aldehydes, 2,3-dihydro-1,4-phthalazinedione and 4-hydroxy coumarin using silica-supported bismuth nitrate (SSBN) under microwave irradiation. The scheme not only offers the use of microwave at low temperatures and significant yield of products but also affords mild reaction conditions, without harmful solvent, shorter reaction times, high purity, operational simplicity, and easy workup.


2017 ◽  
Vol 1 (3) ◽  
pp. 17-22 ◽  
Author(s):  
Shalini Jaiswal ◽  
Smriti Dwivedi

Due to the growing awareness about environmental pollution and environmental legislation, recent years have witnessed a phenomenal increase in the application of microwave irradiation (MW) in organic synthesis. Heterocyclic compounds are abundant in nature and are of great significance to life because their structural subunits exist in many natural products such as vitamins, hormones, and antibiotics; hence, they have attracted considerable attention in the design of biologically active molecules and advanced organic chemistry. The application of molecular diversity technique to drug discovery is a multidisciplinary effort in organic synthesis. Medicinal chemistry concerns with the discovery, development, interpretation and the identification of mechanism of action of biologically active compounds at the molecular level. Encouraged by above reports and as part of our research programme for development of eco-friendly synthetic protocol for biologically active compounds as well as in pursuing of our work on new solvent-free cyclisation here we report the synthesis of aryl-triazalo -1, 3, 4-thidiazoles. The one-pot reaction of mercapto-s-triazole with aromatic acid using AlCl3 as a catalyst under microwave irradiation (2-3 min) and in solvent-free condition gave aryl-triazalo -1, 3, 4-thidiazoles with improved yield is described here. Keywords: Aryl-triazalo-1, 3, 4-thiadiazoles, Aromatic acid, AlCl3, cyclisation, S. aureus, E. coli, B. subtilis.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 108105-108112 ◽  
Author(s):  
Shaily Shaily ◽  
Ajay Kumar ◽  
Sumit Kumar ◽  
Naseem Ahmed

An improved synthetic protocol has been developed to construct highly functionalized heterologous alkyl and benzyl indolyl-coumarin derivatives using a rapid, catalyst-free and solvent-free one-pot three-component reaction of indole, aldehyde and 4-hydroxy-coumarin.


2011 ◽  
Vol 8 (1) ◽  
pp. 312-318 ◽  
Author(s):  
Taoues Boumoud ◽  
Boudjemaa Boumoud ◽  
Paul Mosset ◽  
Abdelmadjid Debache

In view of the emerging importance of the green chemistry principles in chemical and pharmaceutical industries, we disclose, herein, a new economic approach producing the biologically active dihydropyrimidinones in good yields using the solventless one-pot Biginelli condensation in the presence of gypsum as an environmental friendly and recycled catalyst.


2020 ◽  
Vol 15 (2) ◽  
pp. 99-104
Author(s):  
Kabeer Ahmed Shaikh ◽  
Uddhav Nivrutti Chaudhar

The present paper shows that lanthanum(III) nitrate hexahydrate can be used as mild and environment friendly homogeneous catalyst for an efficient one-pot multi-component synthesis of biologically active 1,8-dioxo-octahydroxanthene and 14H-dibenzo[a,j]xanthene derivatives. The solvent free condensation reaction of aromatic aldehydes and dimedone or β-naphthol was carried out at 70-80ºC during 10-30 min. The advantages of this eco-friendly synthesis route are numerous, and include the use of an inexpensive catalyst, high to excellent yield, short reaction time and high catalytic activity that can make this method an interesting alternative to multi-step approaches.


2019 ◽  
Vol 22 (2) ◽  
pp. 123-128
Author(s):  
Setareh Habibzadeh ◽  
Hassan Ghasemnejad-Bosra ◽  
Mina Haghdadi ◽  
Soheila Heydari-Parastar

Background: In this study, we developed a convenient methodology for the synthesis of coumarin linked to pyrazolines and pyrano [2,3-h] coumarins linked to 3-(1,5-diphenyl-4,5- dihydro-1H-pyrazol-3-yl)-chromen-2-one derivatives using Chlorosulfonic acid supported Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles (Fe3O4-PPCA) catalyst. Materials and Methods:: Fe3O4-PPCA was investigated as an efficient and magnetically recoverable Nanocatalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with a variety of aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be easily recovered by applying an external magnet device and reused for at least 10 reaction runs without considerable loss of reactivity. Results and Conclusion: The advantages of this protocol are the use of commercially available materials, simple and an inexpensive procedure, easy separation, and an eco-friendly procedure, and it shows good reaction times, good to high yields, inexpensive and practicability procedure, and high efficiency.


2020 ◽  
Vol 23 (2) ◽  
pp. 157-167
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Objective: A facile and efficient method for synthesis of 3, 4-dihydropyrimidin-2(1H)-ones via Biginelli reaction catalyzed by a novel dicationic Brönsted acidic ionic liquid, [(EtNH2)2SO][HSO4]2, has been successfully developed. Material and Method:: 3, 4-Dihydropyrimidin-2(1H)-ones were synthesized through one-pot condensation of aromatic aldehydes, ethyl acetoacetate, and urea under solvent-free conditions using [(EtNH2)2SO][HSO4]2 as a novel catalyst. The progress of the reaction was monitored by thin-layer chromatography (ethyl acetate / n-hexane = 1 / 5). The products have been characterized by IR, 1H NMR, 13C NMR, and also by their melting points. Results: In this research, a library of dihydropyrimidinone derivatives was synthesized via Biginelli reaction under solvent-free conditions at 120oC using [(EtNH2)2SO][HSO4]2 as a catalyst. Various aromatic aldehydes, as well as heteroaromatic aldehydes, were employed, affording good to high yields of the corresponding products and illustrating the substrate generality of the present method. In addition, the prepared dicationic Brönsted acidic ionic liquid can be easily recovered and reused. Conclusion: 1, 1’-Sulfinyldiethylammonium bis (hydrogen sulfate), as a novel dicationic ionic liquid, can act as a highly efficient catalyst for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions.


2020 ◽  
Vol 17 (6) ◽  
pp. 438-442
Author(s):  
Xiaofang Ma ◽  
Shunxi Li ◽  
Samrat Devaramani ◽  
Guohu Zhao ◽  
Daqian Xu

The elimination of volatile organic solvents in organic synthesis is the most important goal in “Green” chemistry. We report a simple, efficient and facile method for the addition of progargyl bromide to carbonyl compounds using Mg metal as a mediator under solvent-free conditions which could regioselectively generate homopropargyl alcohols efficiently in good to excellent yields. The procedure has advantages such as short reaction time, operationally simple, excellent product yields, high regioselectivity and organic solvent-free.


2020 ◽  
Vol 17 (10) ◽  
pp. 772-778
Author(s):  
Abdulrhman Alsayari ◽  
Abdullatif Bin Muhsinah ◽  
Yahya I. Asiri ◽  
Jaber Abdullah Alshehri ◽  
Yahia N. Mabkhot ◽  
...  

The aim of this study was to synthesize and evaluate the biological activity of pyrazole derivatives, in particular, to perform a “greener” one-pot synthesis using a solvent-free method as an alternative strategy for synthesizing hydrazono/diazenyl-pyridine-pyrazole hybrid molecules with potential anticancer activity. Effective treatment for all types of cancers is still a long way in the future due to the severe adverse drug reactions and drug resistance associated with current drugs. Therefore, there is a pressing need to develop safer and more effective anticancer agents. In this context, some hybrid analogues containing the bioactive pharmacophores viz. pyrazole, pyridine, and diazo scaffolds were synthesized by one-pot method. Herein, we describe the expedient synthesis of pyrazoles by a onepot three-component condensation of ethyl acetoacetate/acetylacetone, isoniazid, and arenediazonium salts under solvent-free conditions, and the evaluation of their cytotoxicity using a sulforhodamine B assay on three cancer cell lines. Molecular docking studies employing tyrosine kinase were also carried out to evaluate the binding mode of the pyrazole derivatives under study. 1-(4-Pyridinylcarbonyl)-3- methyl-4-(2-arylhydrazono)-2-pyrazolin-5-ones and [4-(2-aryldiazenyl)-3,5-dimethyl-1H-pyrazol-1- yl]-4-pyridinylmethanones, previously described, were prepared using an improved procedure. Among these ten products, 1-isonicotinoyl-3-methyl-4-[2-(4-nitrophenyl)hydrazono]-2-pyrazolin-5-one (1f) displayed promising anticancer activity against the MCF-7, HepG2 and HCT-116 cell lines, with an IC50 value in the range of 0.2-3.4 μM. In summary, our findings suggest that pyrazoles containing hydrazono/ diazenyl and pyridine pharmacophores constitute promising scaffolds for the development of new anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document