Direct displacement based seismic design for single storey steel concentrically braced frames

2016 ◽  
Vol 10 (5) ◽  
pp. 1125-1141 ◽  
Author(s):  
Suhaib Salawdeh ◽  
Jamie Goggins
2017 ◽  
Vol 137 ◽  
pp. 211-227 ◽  
Author(s):  
Onur Seker ◽  
Bulent Akbas ◽  
Pinar Toru Seker ◽  
Mahmoud Faytarouni ◽  
Jay Shen ◽  
...  

1992 ◽  
Vol 19 (6) ◽  
pp. 1025-1031 ◽  
Author(s):  
R. G. Redwood ◽  
A. K. Jain

Extensive research into the inelastic seismic response of concentrically braced frames and their components has been carried out in the last two decades. This knowledge has now been incorporated into seismic design practice in several countries, notably the U.S.A., Canada, and New Zealand. In this paper, design specifications from these three countries, which derive largely from the same body of research, are compared. The basic design philosophy for concentrically braced steel frames, loading, and member detailing are examined. It is concluded that, in general, the Canadian specifications are in conformity with the available information and have many similar features to codes of the other countries. Significant differences exist in the classification of braced frames, between interstorey drift requirements, in the treatment of dual structural systems, and to a lesser extent in member detailing requirements. Some features of Canadian codes meriting review are identified. Key words: structural engineering, earthquakes, standards, steel, braced frame, ductility, concentric bracing, dual system.


1996 ◽  
Vol 23 (3) ◽  
pp. 727-756 ◽  
Author(s):  
Robert Tremblay ◽  
Andre Filiatrault ◽  
Michel Bruneau ◽  
Masayoshi Nakashima ◽  
Helmut G. L. Prion ◽  
...  

Past and current seismic design provisions for steel structures in Japan are presented and compared with Canadian requirements. The performance of steel framed structures during the January 17, 1995, Hyogo-ken Nanbu earthquake is described. Numerous failures and examples of inadequate behaviour could be observed in buildings of various ages, sizes, and heights, and braced with different structural systems. In moment resisting frames, the damage included failures of beams, columns, beam-to-column connections, and column bases. Fracture of bracing members or their connections was found in concentrically braced frames. The adequacy of the current Canadian seismic design provisions is examined in view of the observations made. Key words: earthquake, seismic design, steel structures.


Sign in / Sign up

Export Citation Format

Share Document