Frequency Response Function of Stress Intensity Factor to Fluid Temperature Fluctuation

2002 ◽  
Vol 2002.15 (0) ◽  
pp. 649-650
Author(s):  
Naoto KASAHARA ◽  
Ichiro FURUHASHI ◽  
Fuquan CHEN ◽  
Masanori AND
2004 ◽  
Vol 126 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Toshiyuki Meshii ◽  
Katsuhiko Watanabe

This paper tries to explain the interesting field data that indicate a surface axisymmetric circumferential crack inside a hollow cylinder (circumferential crack) shows tendency toward crack arrest, when the temperature of the fluid inside the cylinder experiences sinusoidal fluctuation (thermal striping). For this purpose, transient stress intensity factor (SIF) range of a circumferential crack in a finite-length thick-walled cylinder with rotation-restrained edges, under thermal striping, was analyzed. It was assumed that the fluid temperature changes sinusoidally and that heat transfer coefficient is constant. First an analytical temperature solution for the problem was obtained and it was combined with our SIF evaluation method derived based on superposition principle and Duhamel’s analogy. Then we defined the maximum SIF range as the maximum value of the SIF range during thermal striping and studied the characteristic change of this maximum SIF range with the variation of crack depth to explain the crack arrest tendency. Results showed that the maximum SIF range under thermal striping decreases monotonously when crack depth is varied to become deeper than a specific value, which corresponds to the crack arrest tendency.


Author(s):  
Toshiyuki Meshii ◽  
Katsuhiko Watanabe

This paper tries to explain the interesting field data that indicate a surface axisymmetric circumferential crack inside a hollow cylinder (circumferential crack) shows tendency toward crack arrest, when the temperature of the fluid inside the cylinder experiences sinusoidal fluctuation (thermal striping). Maximum stress intensity factor (SIF) range of a circumferential crack in a finite-length thick-walled cylinder with rotation-restrained edges, under thermal striping, was studied for this attempt. It was assumed that the fluid temperature changes sinusoidally and that heat transfer coefficient is constant. Results showed that the maximum SIF range under thermal striping decreases monotonously when crack depth is varied to become longer than a specific value, which corresponds to the crack arrest tendency. These results are similar to those obtained for the step temperature change. Thus, characteristics obtained for the step temperature change, such as the existence of an upper limit for the normalized crack arrest depth independent of the cylinder material and fluid temperature, are valid also for thermal striping (163 words).


Author(s):  
Salman Alrakan ◽  
Hiroshi Kuribayashi ◽  
Naoto Kasahara

In nuclear reactors, piping components are susceptible to thermal fatigue damage. This is due to the fluid temperature change along these pipelines that can generate repeated thermal loads. One of these loads is thermal stratification. Thermal stratification generates an oscillating stratified layer, which induce cyclic thermal stresses leading to fatigue damage. To evaluate thermal fatigue by thermal stratification, a frequency response function for straight pipes was developed. However, this function cannot evaluate elbow pipes under thermal stratification. Here, thermal stress generates due to bending moment that is generated by the horizontal portion unlike straight pipes. Furthermore, the elbow pipe can give rise to stress intensifications which can affect the peak stress values within the elbow. To understand the stress generation mechanism, Finite element analyses were performed. The study focused on the effect the frequency of the fluid oscillation on the stress generation mechanism. Based on the clarified mechanism, the frequency response function was improved to correspond to the thermal stratification at elbow pipes. Applicability of this function was validated through agreement with finite element simulation.


Author(s):  
Kohei Soda ◽  
Takato Mizutani ◽  
Naoto Kasahara

In nuclear power plants, high cycle thermal fatigue induced by temperature fluctuation of the coolant is one of frequent failure modes. To ensure the safety of nuclear power plant systems, it is important to prevent thermal fatigue failure. Typical causes of high cycle thermal fatigue are thermal striping at Tee-junction and thermal stratification oscillation. In order to evaluate thermal stress caused by thermal striping, a frequency response function has been developed. This function was derived from a heat transfer and thermal elastic theories, and can adequately evaluate thermal stress induced by temperature gradient into wall-thickness direction. However, this theoretical method cannot adequately evaluate thermal stress by thermal stratification oscillation, because this phenomenon has the fluid temperature distribution gradient along axial direction. To investigate the mechanism of thermal stress generated by oscillation of thermal stratification, two types of models were studied. In the first type, fluid temperature oscillates with sinusoidal history at the same location, and in the second one, the boundary layer of hot and cold fluid temperature moves with sinusoidal velocity. Through clarification of the stress generation mechanism, the frequency response function was improved to evaluate stress by the thermal stratification oscillation. Applicability of this function was verified through agreement with finite element simulations.


Sign in / Sign up

Export Citation Format

Share Document