503 Finite Element Analysis of Electromagnetic Field Using Proper Orthogonal Decomposition

2013 ◽  
Vol 2013.26 (0) ◽  
pp. _503-1_-_503-2_
Author(s):  
Yuki SATO ◽  
Hajime IGARASHI
Author(s):  
Alok Sinha ◽  
Benjamin Hall ◽  
Brice Cassenti ◽  
Gary Hilbert

This paper deals with the development of a procedure to model geometric variations of blades. Specifically, vibratory parameters of blades are extracted from CMM data on an integrally bladed rotor (IBR). The method is based on proper orthogonal decomposition (POD) of CMM data, solid modeling and finite element techniques. In addition to obtaining natural frequencies and mode shapes of each blade on an IBR, statistics of these modal parameters are also computed and characterized. Numerical results are validated by comparison with experimental results.


2019 ◽  
Vol 20 (K9) ◽  
pp. 5-14
Author(s):  
Nguyen Ngoc Minh ◽  
Nguyen Thanh Nha ◽  
Truong Tich Thien ◽  
Bui Quoc Tinh

The consecutive-interpolation technique has been introduced as a tool enhanced into traditional finite element procedure to provide higher accurate solution. Furthermore, the gradient fields obtained by the proposed approach, namely consecutive-interpolation finite element method (CFEM), are smooth, instead of being discontinuous across nodes as in FEM. In this paper, the technique is applied to analyze transient heat transfer problems. In order increase time efficiency, a model- reduction technique, namely the proper orthogonal decomposition (POD), is employed. The idea is that a given large-size problem is projected into a small-size one which can be solved faster but still maintain the required accuracy. The optimal POD basis for projection is determined by mathematical operations. With the combination of the two novel techniques, i.e. consecutive-interpolation and proper orthogonal decomposition, the advantages of numerical solution obtained by CFEM are expected to be maintained, while computational time can be significantly saved.


Author(s):  
Christos I. Papadopoulos ◽  
Ioannis T. Georgiou

We extend the application of temporal and spectral Proper Orthogonal Decomposition (POD) to study the sound propagation and sound-structure interaction of systems combined of acoustic and structural subsystems. We consider a prototypical system consisted of two adjacent rooms separated by a sound insulating plate. Approximation to the steady-state and transient response is obtained with the aid of the finite element method. We define the temporal (real) and spectral (complex) variations of POD to tackle acoustical and structural degrees of freedom. We apply the method to process the numerical databases of the finite element solutions. It is shown that the steady-state and transient response may be represented by a small number of dominant POD modes. The extracted frequencies and spatial shapes are evaluated and linked to the modal properties of the system. It is shown that POD analysis may provide significant insight on the properties of coupled structural-acoustic systems.


Sign in / Sign up

Export Citation Format

Share Document