310 Numerical Simulation of Unsteady Flow Phenomena in Upper Plenum and Piping System with 90° Short Elbow in JSFR

2012 ◽  
Vol 2012.20 (0) ◽  
pp. 75-76
Author(s):  
Masaaki TANAKA ◽  
Tatsuya FUJISAKI
1990 ◽  
Author(s):  
Edward M. Greitzer ◽  
Alan H. Epstein ◽  
Michael B. Giles ◽  
James E. McCune ◽  
Choon S. Tan
Keyword(s):  

1970 ◽  
Vol 92 (1) ◽  
pp. 65-71 ◽  
Author(s):  
E. Lennemann ◽  
J. H. G. Howard

The phenomena of unsteady relative flow observed in a centrifugal impeller passage running at part capacity and zero flow are discussed. The mechanisms of passage stall for a shrouded and unshrouded impeller are investigated and a qualitative correlation is developed for the influence of secondary flow and inducer flow on the passage stall. The hydrogen bubble flow visualization technique is extended to higher velocities and rotating systems and provides the method for obtaining the experimental results.


Author(s):  
A. Hergt ◽  
J. Klinner ◽  
J. Wellner ◽  
C. Willert ◽  
S. Grund ◽  
...  

The flow through a transonic compressor cascade shows a very complex structure due to the occuring shock waves. In addition, the interaction of these shock waves with the blade boundary layer inherently leads to a very unsteady flow behaviour. The aim of the current investigation is to quantify this behaviour and its influence on the cascade performance as well as to describe the occuring transonic flow phenomena in detail. Therefore, an extensive experimental investigation of the flow in a transonic compressor cascade has been conducted within the transonic cascade wind tunnel of DLR at Cologne. In this process, the flow phenomena were thoroughly examined for an inflow Mach number of 1.21. The experiments investigate both, the laminar as well as the turbulent shock wave boundary layer interaction within the blade passage and the resulting unsteady behaviour. The experiments show a fluctuation range of the passage shock wave of about 10 percent chord for both cases, which is directly linked with a change of the inflow angle and of the operating point of the cascade. Thereafter, RANS simulations have been performed aiming at the verification of the reproducibility of the experimentally examined flow behavior. Here it is observed that the dominant flow effects are not reproduced by a steady numerical simulation. Therefore, a further unsteady simulation has been carried out in order to capture the unsteady flow behaviour. The results from this simulation show that the fluctuation of the passage shock wave can be reproduced but not in the correct magnitude. This leads to a remaining weak point within the design process of transonic compressor blades, because the working range will be overpredicted. The resulting conclusion of the study is that the use of scale resolving methods such as LES or the application of DNS is necessary to correctly predict unsteadiness of the transonic cascade flow and its impact on the cascade performance.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1592
Author(s):  
Xin Chen ◽  
Shiyang Li ◽  
Dazhuan Wu ◽  
Shuai Yang ◽  
Peng Wu

In order to study the effects of the suction and discharge conditions on the hydraulic performance and unsteady flow phenomena of an axial-flow reactor coolant pump (RCP), three RCP models with different suction and discharge configurations are analyzed by computational fluid dynamics (CFD) method. The CFD results are validated by experimental data. The hydraulic performance of the three RCP models shows little difference. However, the unsteady flow phenomena of RCP are significantly affected by the variation of suction and discharge conditions. Compared with that of Model E-S (baseline, elbow-single nozzle), the pressure pulsation in rotating frame of Model S-S (straight pipe-single nozzle) and Model E-D (elbow-double nozzles) is weakened in different degrees and forms, due to the more uniform flow fields upstream and downstream of the impeller, respectively. It indicates that the generalized rotor-stator interaction (RSI) actually exists between the rotating impeller and all stationary components causing the circumferentially non-uniform flow. Furthermore, improving the circumferential uniformity of the flow upstream and downstream of impeller (suction and discharge flow) also contributes to reducing the radial dynamic fluid force acting on the impeller. Compared with those of Model E-S, the dynamic FX and FY of Model S-S are severely weakened, and those of Model E-D also gain a minor amplitude decrease at fBPF. In contrast, the general pressure pulsation in fixed frame is mainly related to the rotating impeller and barely affected by the suction and discharge conditions.


Sign in / Sign up

Export Citation Format

Share Document