2741 Relation between Surface Characteristics of Cold-rolled Stainless Steel and Oil Film Thickness in Cold Rolling

2007 ◽  
Vol 2007.1 (0) ◽  
pp. 643-644
Author(s):  
Hiroyasu YAMAMOTO ◽  
Hiroshi IKUTA
2018 ◽  
Vol 786 ◽  
pp. 52-56
Author(s):  
Antti Järvenpää ◽  
Matias Jaskari ◽  
Pentti L. Karjalainen

Lower cold rolling reductions before reversion annealing for the grain size refinement are desired in industrial practice. This study demonstrates the effect of a low (32%) cold rolling reduction on cyclic behavior of a partially reversed (750 °C for 0.1s) structure in a 17Cr-7Ni-N type 301LN austenitic stainless steel and compares it with those of a 63% cold rolled and annealed and with a conventional coarse-grained structure. Stress amplitude and the amount of deformation-induced martensite formed under cyclic loading at the 0.6% total strain amplitude were recorded. The results showed that the partially reversed structure after the 32% cold rolling reduction exhibits the similar cyclic stress amplitude level and slight cyclic hardening as the 63% cold-rolled counterpart does. Even though the grain size refinement remains less effective at the lower reduction, the microstructure consists of higher fractions of strong retained cold-deformed austenite and martensite phases which increase the flow resistance. However, the coarse-grained structure exhibits a much lower initial stress amplitude and much more pronounced cyclic hardening. The susceptibility of austenite to transform deformation-induced martensite is practically similar among these three structures. However, the cyclic hardening is a caused by the formation of deformation-induced martensite, and the difference in the degree of cyclic hardening results from the big difference in the strength of the austenite between the partially reversed fine-grained and coarse-grained structures.


2012 ◽  
Vol 510-511 ◽  
pp. 475-480
Author(s):  
S.H. Khan ◽  
Aamer Nusair Khan

Ultrasonic testing has a strong application in defect detection. An efficient tool for characterizing and life assessment of material structure and components by nondestructive ultrasonic velocity was developed about thirty years ago. Cold rolling results in increase in strength and hardness. The work discussed here is to study quantitative ultrasonic longitudinal velocity for characterizing a change in microstructure due to cold rolling in austenitic stainless steel samples. Samples were cold rolled upto 80 percent in 10 percent step. It was found that the use of velocity measurements is a useful quantitative and non-destructive tool for characterizing amount of cold rolled austenitic stainless steel.


2014 ◽  
Vol 548-549 ◽  
pp. 310-315
Author(s):  
W.M.F.W. Mohamad ◽  
M.Z. Selamat ◽  
B. Bundjali ◽  
M. Musa

This present paper is aims to study the influence of cold rolling process on the microstructure and corrosion behaviors of 316L stainless steel using potentiodynamics polarization testing techniques. The steel with initial thickness of 2.0 mm was unidirectional cold rolled to 10%, 30% and 50% reduction in thickness. The corrosion behaviors of the cold rolled steels were evaluated in phosphate buffered saline (PBS) as their simulated body fluids environment. The pH and temperature of the solution was maintained at 7.31 and 37°C and took approximately 5 hours for each individual test. The microstructure observations of the steels were studied using optical microscope and scanning electron microscopy (SEM). The results showed that the cold rolling process has modified the microstructure of 316L stainless steel by producing extensive surface defects. The microstructure modifications of the cold-rolled steel caused to enhance the corrosion resistance by lowering its corrosion rate to 23% and reduce the pitting resistance by lowering its breakdown potential to 61%. The pit corrosion was extensively appeared after reaching the breakdown potential.


2003 ◽  
Vol 2003.1 (0) ◽  
pp. 463-464
Author(s):  
Hiroshi IKUTA ◽  
Hiroyasu YAMAMOTO ◽  
Hisatsugu OTA ◽  
Toshikazu RYUNO

Sign in / Sign up

Export Citation Format

Share Document