Study on SOFC-Stirling Engine Combined System : Fundamental Experiment on Heater Tube Heat Transfer

2003 ◽  
Vol 2003.7 (0) ◽  
pp. 49-50
Author(s):  
Shinichi NUDEJIMA ◽  
Sanyo TAKAHASHI ◽  
Iwao YAMASHITA
2020 ◽  
Vol 78 (3) ◽  
pp. 141-159 ◽  
Author(s):  
Hua Zhu ◽  
Xiaohong Yang ◽  
Rui Tian ◽  
Lei Han ◽  
Liping Wang

2021 ◽  
Author(s):  
Anthony A. DiCarlo ◽  
Rickey A. Caldwell

Abstract This work aims to determine the optimal heat sink fin shape to promote the efficient rise of hot air away from the heat sink. The heat transfer and convective flow dynamics external to a commercial Stirling engine are investigated. In particular, this study employs an adjoint optimization approach based on CFD simulations to determine the sensitivity of the objective function to the shape of the heat sink and influence on the natural convection heat flow away from the external heat sink. This deterministic optimization approach increases the heat transfer rate of the heat sink by nearly 20% in this study when performing a small number of design iterations.


Author(s):  
Nan Jiang ◽  
Terrence W. Simon

The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.


This chapter consists of three sections, ‘Dynamic Characteristics of PEFC / Woody Biomass Engine Hybrid Microgrid’, ‘Exergy Analysis of the Woody Biomass Stirling Engine and PEFC Combined System with Exhaust Heat Reforming’ and ‘Exergy Analysis of A Regional Distributed PEM Fuel Cell System’. The chapter describes the exhaust heat of the combustion of woody biomass engine using a Stirling cycle that was used for the city gas reforming reaction of a PEFC system. The response characteristic of PEFC and woody biomass engine is investigated by the experiment and numerical analysis. Finally, a combined system that uses the exhaust heat of the woody biomass Stirling engine for the steam reforming of city gas and that supplies the produced reformed gas to a PEFC is proposed.


Author(s):  
Houcheng Zhang ◽  
Lanmei Wu ◽  
Guoxing Lin

A class of solar-driven heat engines is modeled as a combined system consisting of a solar collector and a unified heat engine, in which muti-irreversibilities including not only the finite rate heat transfer and the internal irreversibility, but also radiation-convection heat loss from the solar collector to the ambience are taken into account. The maximum overall efficiency of the system, the optimal operating temperature of the solar collector, the optimal temperatures of the working fluid and the optimal ratio of heat transfer areas are calculated by using numerical calculation method. The influences of radiation-convection heat loss of the collector and internal irreversibility on the cyclic performances of the solar-driven heat engine system are revealed. The results obtained in the present paper are more general than those in literature and the performance characteristics of several solar-driven heat engines such as Carnot, Brayton, Braysson and so on can be directly derived from them.


2020 ◽  
Vol 17 ◽  
pp. 100492 ◽  
Author(s):  
Panagiotis Bitsikas ◽  
Emmanouil Rogdakis ◽  
George Dogkas

Sign in / Sign up

Export Citation Format

Share Document