scholarly journals A study of the crowning method for the type 3 worm gear. 1st report An analysis of calculation method for the basic thread surface of the hob.

1986 ◽  
Vol 52 (481) ◽  
pp. 2443-2448
Author(s):  
Satoshi KISHI ◽  
Muneharu MOROZUMI ◽  
Yoshitaroh YOSHIDA
Author(s):  
Mauro De Donno ◽  
Faydor L. Litvin

Abstract The authors propose methods of computerized design and analysis of a spiroid worm-gear drive with ground worm based on the following considerations: (1) The theoretical thread surface of the hob is generated by a cone surface. (2) The worm surface is crowned in profile and longitudinal directions in comparison with the hob thread surface. (3) The double crowning of the worm enables to localize the bearing contact and obtain a predesigned parabolic function of transmission errors of an assigned level. Computerized design of the worm-gear drive enables to discover and avoid singularities of the generated worm face-gear surface and pointing of teeth. The meshing and contact of the double-crowned worm and the worm face-gear is simulated to determine the influence of misalignment on the shift of bearing contact and transmission errors. Computer program for numerical solution is developed and applied. A numerical example that illustrates the developed theory is provided.


Author(s):  
Jian Cui ◽  
Yaping Zhao ◽  
Qingxiang Meng ◽  
Gongfa Li
Keyword(s):  

1999 ◽  
Vol 121 (2) ◽  
pp. 264-273 ◽  
Author(s):  
M. De Donno ◽  
F. L. Litvin

The authors propose methods of computerized design and analysis of a spiroid worm-gear drive with ground worm based on the following considerations: (1) The theoretical thread surface of the hob is generated by a cone surface. (2) The worm surface is crowned in profile and longitudinal directions in comparison with the hob thread surface. (3) The double crowning of the worm enables to localize the bearing contact and obtain a predesigned parabolic function of transmission errors of an assigned level. Computerized design of the worm-gear drive enables to discover and avoid singularities of the generated worm face-gear surface and pointing of teeth. The meshing and contact of the double-crowned worm and the worm face-gear is simulated to determine the influence of misalignment on the shift of bearing contact and transmission errors. Computer program for numerical solution is developed and applied. A numerical example that illustrates the developed theory is provided.


Sign in / Sign up

Export Citation Format

Share Document