Spatial Variability of Soil Particle-Size Distribution Heterogeneity in Farmland

2018 ◽  
Vol 61 (2) ◽  
pp. 591-601
Author(s):  
Jilong Liu ◽  
Lingling Zhang ◽  
Qiang Fu ◽  
Gaoqi Ren ◽  
Lu Liu ◽  
...  

Abstract. The objective of this research was to reveal the spatial variability of soil particle-size distribution heterogeneity. The farmland (48 m × 48 m) used in this study is located in the black soil region of northeast China and was divided into sixty-four 6 m × 6 m squares for sampling. The soil particle-size distribution was measured with a Mastersizer 2000. Soil particle-size distribution heterogeneity, the spatial variability of soil particle-size distribution heterogeneity, and the relationships between soil particle-size distribution heterogeneity and the clay, silt, and sand contents were studied by applying multifractal, geostatistical, and joint multifractal methods, respectively. The soil particle-size distribution had multifractal characteristics. Local information causing soil particle-size distribution heterogeneities were mainly low values of soil particle-size distribution; heterogeneities from the low-value side of the particle-size distribution were larger than those from the high-value side of the particle-size distribution. In the different soil layers, the degree of variation in soil particle-size distribution heterogeneities was moderate, with spatial correlation ranges of 37.82 m and moderate spatial dependences. At the single scale and multi-scale, the impacts of the clay, silt, and sand contents on the soil particle-size distribution heterogeneity changed with soil layer depth. The clay, silt, and sand contents had different degrees of influence on the spatial variability of soil particle-size distribution heterogeneity at the single scale and multi-scale. Multi-scale analysis could better reveal the degrees of influence of the above soil properties on the spatial variability of soil particle-size distribution heterogeneity. The results of this study enrich the knowledge of the spatial variability of soil properties and provide a reference and additional information for the quantitative characterization of soil particle-size distribution heterogeneity and soil management in this research area. Keywords: Geostatistics, Multifractal analysis, Relationship, Soil property.

2020 ◽  
Author(s):  
Attila Nemes ◽  
Anna Angyal ◽  
Andras Mako ◽  
Jan Erik Jacobsen ◽  
Eszter Herczeg

<p>The PARIO system is a novel technique for the measurement of soil particle-size distribution. It is a computerized sedimentation-based system that will yield a quasi-continuous particle-size distribution curve. Given that it is semi-automated, continuous and sedimentation-based, this system promises to become a good and compatible alternative to the traditional pipette or hydrometer techniques. Through hundreds of measurements we have acquired practical operational knowledge that this poster will share with potential future users. We will also present quantitative information on the technique’s sensitivity to e.g. temperature shift or intermittent vibration during measurement. We also used a set of 45 soil samples of various texture from Norway to compare particle-size distribution measured by the PARIO system, the traditional pipette technique and laser diffractometry. We discuss measurement results as well as related sample-preparation aspects.</p>


Sign in / Sign up

Export Citation Format

Share Document