scholarly journals Combination on endophytic fungal as the Plant Growth-Promoting Fungi (PGPF) on cucumber (Cucumis sativus)

2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Syamsia Syamsia ◽  
ABUBAKAR IDHAN ◽  
AMANDA PATAPPARI FIRMANSYAH ◽  
NOERFITRYANI NOERFITRYANI ◽  
IRADHATULLAH RAHIM ◽  
...  

Abstract. Syamsia S, Idhan A, Firmansyah AP, Noerfitryani N, Rahim I, Kesaulya H, Armus R. 2021. Combination on endophytic fungal as the Plant Growth-Promoting Fungi (PGPF) on Cucumber (Cucumis sativus). Biodiversitas 22: 1194-1202. Endophytic fungi are known to stimulate plant growth by producing secondary metabolites, including phytohormones (IAA and Gibberellins), siderophore, phosphate-solubilizing metabolites. In this study, a total of six endophytic fungi were successfully isolated from local rice plants and showed different abilities in producing secondary metabolites, during single isolates testing. These six isolates were then combined to obtain 15 combinations for analysis, to determine the best combination for application as a plant growth promoter. Subsequently, each combination was tested for phytohormones (IAA, gibberellins) and siderophore (quantitatively)-producing activity, phosphate-solubilizing ability, and the effect on cucumber (Cucumis sativus L) plant growth. F13 showed activity in producing IAA and produced the highest gibberellin levels, while F1 exhibited the highest phosphate-solubilizing activity. In addition, F11 (Na-salicylate) and F1 (catechol) showed the highest siderophore activity, while a combination of F6, F8, F9, and F12 successfully increased plant height growth. Also, F4 increased the root growth, while the fresh weight of cucumber was increased by F8 treatment, under controlled conditions. Molecular analysis showed the tested isolates have close similarity to Daldinia eschscholtzii, Sarocladium oryzae, Rhizoctonia oryzae, Penicillium allahabadense, and Aspergillus foetidus. The combination of endophyte fungal isolates showed potential as plant growth promoters, however, further testing on several plant types is required before the combination is to be widely applied.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 140 ◽  
Author(s):  
Ahmed Mohamed Aly Khalil ◽  
Saad El-Din Hassan ◽  
Sultan M. Alsharif ◽  
Ahmed M. Eid ◽  
Emad El-Din Ewais ◽  
...  

Endophytic fungi are widely present in internal plant tissues and provide different benefits to their host. Medicinal plants have unexplored diversity of functional fungal association; therefore, this study aimed to isolate endophytic fungi associated with leaves of medicinal plants Ephedra pachyclada and evaluate their plant growth-promoting properties. Fifteen isolated fungal endophytes belonging to Ascomycota, with three different genera, Penicillium, Alternaria, and Aspergillus, were obtained from healthy leaves of E. pachyclada. These fungal endophytes have varied antimicrobial activity against human pathogenic microbes and produce ammonia and indole acetic acid (IAA), in addition to their enzymatic activity. The results showed that Penicillium commune EP-5 had a maximum IAA productivity of 192.1 ± 4.04 µg mL−1 in the presence of 5 µg mL−1 tryptophan. The fungal isolates of Penicillium crustosum EP-2, Penicillium chrysogenum EP-3, and Aspergillus flavus EP-14 exhibited variable efficiency for solubilizing phosphate salts. Five representative fungal endophytes of Penicillium crustosum EP-2, Penicillium commune EP-5, Penicillium caseifulvum EP-11, Alternaria tenuissima EP-13, and Aspergillus flavus EP-14 and their consortium were selected and applied as bioinoculant to maize plants. The results showed that Penicillium commune EP-5 increased root lengths from 15.8 ± 0.8 to 22.1 ± 0.6. Moreover, the vegetative growth features of inoculated maize plants improved more than the uninoculated ones.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1071
Author(s):  
Minchong Shen ◽  
Jiangang Li ◽  
Yuanhua Dong ◽  
Hong Liu ◽  
Junwei Peng ◽  
...  

Microbial treatment has recently been attracting attention as a sustainable agricultural strategy addressing the current problems caused by unreasonable agricultural practices. However, the mechanism through which microbial inoculants promote plant growth is not well understood. In this study, two phosphate-solubilizing bacteria (PSB) were screened, and their growth-promoting abilities were explored. At day 7 (D7), the lengths of the root and sprout with three microbial treatments, M16, M44, and the combination of M16 and M44 (Com), were significantly greater than those with the non-microbial control, with mean values of 9.08 and 4.73, 7.15 and 4.83, and 13.98 and 5.68 cm, respectively. At day 14 (D14), M16, M44, and Com significantly increased not only the length of the root and sprout but also the underground and aboveground biomass. Differential metabolites were identified, and various amino acids, amino acid derivatives, and other plant growth-regulating molecules were significantly enhanced by the three microbial treatments. The profiling of key metabolites associated with plant growth in different microbial treatments showed consistent results with their performances in the germination experiment, which revealed the metabolic mechanism of plant growth-promoting processes mediated by screened PSB. This study provides a theoretical basis for the application of PSB in sustainable agriculture.


2009 ◽  
Vol 329 (1-2) ◽  
pp. 421-431 ◽  
Author(s):  
Tania Taurian ◽  
María Soledad Anzuay ◽  
Jorge Guillermo Angelini ◽  
María Laura Tonelli ◽  
Liliana Ludueña ◽  
...  

Author(s):  
Cun Yu ◽  
Ying Yao

Endophytic fungi were isolated from Phoebe bournei and their diversity and antimicrobial and plant growth-promoting activities were investigated. Of the 389 isolated endophytic fungi, 88.90% belonged to phylum Ascomycota and 11.10% to phylum Basidiomycota. The isolates were grouped into four taxonomic classes, 11 orders, 30 genera, and 45 species based on internal transcribed spacer sequencing and morphologic analysis. The host showed a strong affinity for the genera Diaporthe and Phyllosticta. The diversity of the fungi was highest in autumn, followed by spring and summer, and was lowest in winter. The fungi exhibited notable tissue specificity in P. bournei, and the species richness and diversity were highest in the root across all seasons. Five isolates showed antimicrobial activity against eight plant pathogens, and reduced the incidence of leaf spot disease in P. bournei. Additionally, 9 biocontrol isolates showed plant growth-promoting activity, with five significantly promoting P. bournei seedling growth. This is the first report on the endophytic fungi of P. bournei and their potential applicability to plant disease control and growth promotion.


Sign in / Sign up

Export Citation Format

Share Document