scholarly journals Identification and characterization of Flavobacteriaceae from farmed Oreochromis niloticus and Clarius gariepinus in Uganda

2018 ◽  
Vol 8 (1) ◽  
pp. 42-50
Author(s):  
AMONO RACHEAL ◽  
CHRISTOPHER J. KASANGA ◽  
DENIS K. BYARUGABA

Racheal A, Kasanga CJ, Byarugaba DK. 2018. Identification and characterization of Flavobacteriaceae from farmed Oreochromis niloticusand Clarius garieoinus. Bonorowo Wetlands 2: 42-50. Bacteria under family Flavobacteriaceae (in this study were also referred to as Flavobacteria) are important pathogens of fish, people, many other animals and plants. In this study, Flavobacteria from Nile tilapia (Oreochromis niloticus) and African catfish (Clarius gariepinus) were identified and characterized from the selected farms in Uganda. Gill and skin swabs were obtained from a total of 119 fish from 19 farms and were dissected aseptically to sample internal organs. The samples were inoculated onto Sheih media and incubated at 25°C for 48 hours. The suspected isolates were identified by colon characteristics, conventional biochemical tests and API 20 NE kits. The isolates were grouped into eight based on colon characteristic similarity. One isolate was selected per group for 16S rRNA gene sequencing and identified using the EZbiocloud.net ID software. Phylogenetic analysis of selected isolates was performed using the 16S rRNA gene sequences in BioEdit and MEGA 7.0.2 software. Basing on extrapolation of sequence analysis of the selected isolates, out of the 86 isolates, Myroides marinus was the most predominant species taking up 4 of the 8 groups (60 isolates) in 13 farms. The rest of the groups comprised of; Acinetobacter pitti, one group (6 isolates) in 6 farms, Chryseobacterium gambrini 2 groups (3 isolates) in 3 farms and one isolate was unidentified, in 3 farms. However, a total of 16 isolates did not grow on sub culturing. Phylogenetic analysis indicated that M. marinus isolates grouped with other M. marinus isolates from gene bank with significant intra-species diversity which was also observed with C. gambrini isolates. All the sampled farms had at least one isolate of a Flavobacterium from Tilapia and/or Catfish. Pathogenicity studies should be conducted on the isolates to establish their importance as fish pathogens and transmission dynamics so that an appropriate control measure can be recommended.

2021 ◽  
Vol 13 (1) ◽  
pp. 396-401
Author(s):  
Khushbu Parihar ◽  
Alkesh Tak ◽  
Praveen Gehlot ◽  
Rakesh Pathak ◽  
Sunil Kumar Singh

The genus Nocardiopsis is well known to produce secondary metabolites especially antibacterial bioactive compound. Isolation and characterization of bioactive compounds producing novel isolates from unusual habitats are crucial. The present study was aimed to explore Didwana dry salt lake of Rajasthan state in India for the isolation and characterization of actinomycetes. The isolated actinomycetes isolates were characterized based on culture characteristics, biochemical tests and 16S rRNA gene sequencing. The 16S rRNA gene sequence analysis revealed that all the five isolates inhabiting soil of the said dry salt lake of Didwana, Rajasthan belonged to four species of Nocardiopsis viz., N. synnemataformans, N. potens, N. prasina and N. dassonvillei subsp. albirubida. The molecular identification based on 16S rRNA gene sequences was found accurate and robust. The phylogram generated through multiple sequence alignment of all the test isolates of Nocardiopsis revealed that the isolates aroused from a single branch and validated monophyletic association. The present study is the first report of exploring Nocardiopsis isolates from the dry salt lake. These characterized Nocardiopsis isolates isolated from Didwana dry salt lake habitat are novel stains and can be of significance in the detection and utilization of novel bioactive compounds.


2004 ◽  
Vol 54 (5) ◽  
pp. 1439-1452 ◽  
Author(s):  
Yaacov Davidov ◽  
Edouard Jurkevitch

A phylogenetic analysis of Bdellovibrio-and-like organisms (BALOs) was performed. It was based on the characterization of 71 strains and on all consequent 16S rRNA gene sequences available in databases, including clones identified by data-mining, totalling 120 strains from very varied biotopes. Amplified rDNA restriction analysis (ARDRA) accurately reflected the diversity and phylogenetic affiliation of BALOs, thereby providing an efficient screening tool. Extensive phylogenetic analysis of the 16S rRNA gene sequences revealed great diversity within the Bdellovibrio (>14 % divergence) and Bacteriovorax (>16 %) clades, which comprised nine and eight clusters, respectively, exhibiting more than 3 % intra-cluster divergence. The clades diverged by more than 20 %. The analysis of conserved 16S rRNA secondary structures showed that Bdellovibrio contained motifs atypical of the δ-Proteobacteria, suggesting that it is ancestral to Bacteriovorax. While none of the Bdellovibrio strains were of marine origin, Bacteriovorax included separate soil/freshwater and marine-specific groups. On the basis of their extensive diversity and the large distance separating the groups, it is proposed that Bacteriovorax starrii be placed into a new genus, Peredibacter gen. nov., with Peredibacter starrii A3.12T (=ATCC 15145T=NCCB 72004T) as its type strain. Also proposed is a redefinition of the Bdellovibrio and the Bacteriovorax–Peredibacter lineages as two different families, i.e. ‘Bdellovibrionaceae’ and a new family, Bacteriovoracaceae. Also, a re-evaluation of oligonucleotides targeting BALOs is presented, and the implications of the large diversity of these organisms and of their distribution in very different environments are discussed.


Sign in / Sign up

Export Citation Format

Share Document