Integration of Geological Data on Seismic Sections: GEOLOGICAL NOTES

AAPG Bulletin ◽  
1956 ◽  
Vol 40 ◽  
Author(s):  
L. F. Ivanhoe (2)
2021 ◽  
Author(s):  
Giulia Penza ◽  
Pietro Paolo Pierantoni ◽  
Chiara Macchiavelli ◽  
Eugenio Turco

<p>Sicily is in the centre of an area where complex geodynamic processes work together, these are: the Tyrrhenian-Apennine System evolution, the African-Ionian slab subduction and Africa-Europe collision.</p><p>During the last 5 Ma it was involved in a process of escape towards east-southeast: while on one side Africa acted as an intender pushing toward north, on the other side the fragmentation and retreat of the African-Ionian slab created space to the east.</p><p>The aim of this study is to reconstruct the kinematic evolution of Sicily, here considered as an independent plate starting from 5 Ma ago, and its role in the context of the Tyrrhenian-Apennine system.</p><p>The plates and microplate involved in the evolution are Europe, Africa and Calabria. The boundaries between these and Sicily are the margin of the Sicily microplate and are lithospheric structures known from the literature and identifiable from high resolution bathymetric maps, seismic sections, geodetic data, focal mechanism of recent earthquakes, gravimetric maps, lithosphere thickness maps and so on.</p><p>Briefly the margin between Sicily and Europe is along the Elimi chain, a E-W trending morpho-structure with transpressive kinematics, the margin with Calabria microplate is along the right-lateral Taormina line and the margin with Africa is expressed along the Malta Escarpment, south of Etna Mount, with transpressive kinematics and along the Sicily Channel, where a series of troughs (Pantelleria, Linosa and Malta) were interpreted in literature as pull-apart basins related to a dextral trascurrent zone.</p><p>The Euler pole of rotation between Sicily and Africa was found starting from the structures in the Sicily Channel and using the GPlates software, then we were able to find also Sicily-Europe and Sicily-Calabria poles and the respective velocity vectors and to compare these with the geological data and better refine the model.</p>


2015 ◽  
Vol 3 (1) ◽  
pp. SB5-SB15 ◽  
Author(s):  
Kurt J. Marfurt ◽  
Tiago M. Alves

Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Seismic attributes are at their best in extracting subtle and easy to overlook features on high-quality seismic data. However, seismic attributes can also exacerbate otherwise subtle effects such as acquisition footprint and velocity pull-up/push-down, as well as small processing and velocity errors in seismic imaging. As a result, the chance that an interpreter will suffer a pitfall is inversely proportional to his or her experience. Interpreters with a history of making conventional maps from vertical seismic sections will have previously encountered problems associated with acquisition, processing, and imaging. Because they know that attributes are a direct measure of the seismic amplitude data, they are not surprised that such attributes “accurately” represent these familiar errors. Less experienced interpreters may encounter these errors for the first time. Regardless of their level of experience, all interpreters are faced with increasingly larger seismic data volumes in which seismic attributes become valuable tools that aid in mapping and communicating geologic features of interest to their colleagues. In terms of attributes, structural pitfalls fall into two general categories: false structures due to seismic noise and processing errors including velocity pull-up/push-down due to lateral variations in the overburden and errors made in attribute computation by not accounting for structural dip. We evaluate these errors using 3D data volumes and find areas where present-day attributes do not provide the images we want.


2019 ◽  
Author(s):  
Klaus Hinsby ◽  
Laurence Gourcy ◽  
Hans Peter Broers ◽  
Anker L. Højberg ◽  
Sian Loveless ◽  
...  

Geophysics ◽  
1945 ◽  
Vol 10 (3) ◽  
pp. 376-393 ◽  
Author(s):  
Jack W. Peters ◽  
Albert F. Dugan

During May, 1944, detailed gravity and magnetic surveys were made at the Grand Saline Salt Dome to secure additional information on the physical properties of this typical East Texas salt dome. The results of the surface gravity and magnetic surveys, and the subsurface gravity survey in the Morton Salt Mine are illustrated and discussed. Densities and the available subsurface data were compiled and were utilized in a quantitative evaluation of the observed gravity data. The theoretical mass distribution which was determined by this quantitative evaluation is not intended to represent the unique solution of the geophysical and geological data; instead, it is offered as a possible solution based on relatively simple assumptions.


Sign in / Sign up

Export Citation Format

Share Document