Low Temperature Buffering of Pore Water Compositions in Sedimentary Basins: Implications for Sediment Diagenesis

AAPG Bulletin ◽  
1993 ◽  
Vol 77 ◽  
Author(s):  
HANOR, JEFFREY S., Louisiana State
2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

<p>Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 ± 5.1 Ma, 59.5 ± 5.2 and 101.6 ± 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 ± 17.5 Ma (MSWD: 7.4), 353.5 ± 13.5 Ma (MSWD: 3.1) and 261.2 ± 8.5 Ma (MSWD: 5.9). All AFT data fail the χ<sup>2</sup> test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r<sub>mro</sub> parameter uses grain specific chemistry to predict apatite’s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r<sub>mro</sub> values and each sample was separated into two kinetic populations that pass the χ<sup>2</sup> test: a less retentive population with ages ranging from 49.3 ± 9.3 Ma to 36.4 ± 4.7 Ma, and a more retentive population with ages ranging from 157.7 ± 19 Ma to 103.3 ± 11.8 Ma, with r<sub>mr0</sub> benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165°C-185°C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75°C-110°C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75°C-95°C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.</p>


2021 ◽  
Author(s):  
Sabrina Kainz ◽  
Lon Abbott ◽  
Rebecca Flowers ◽  
James Metcalf

<p>Past work has used the Southern Rocky Mountains (SRM) in the U.S. state of Colorado to illustrate the important role that rock strength plays in the histories recorded by the apatite fission track (AFT) and apatite (U-Th)/He (AHe) low-temperature thermochronometers (Flowers & Ehlers, 2018). The SRM were initially raised during the Laramide Orogeny, ca. 70-45 Ma, but consensus exists that the region also experienced a later, post-Laramide exhumation event. Flowers & Ehlers (2018) pointed to the low erosion potential of the Precambrian crystalline basement rocks that crop out in most SRM ranges as a primary reason for the abundance of 55-70 Ma “Laramide” AFT and AHe dates in the region, compared to a paucity of younger dates that would presumably be produced through erosion triggered by the post-Laramide exhumation event. South-central Colorado offers a test of this hypothesis, due to lateral variations in rock erodibility provided by the presence here of both sedimentary and crystalline Laramide ranges and adjacent sedimentary basins. The combination of our ongoing AHe study with previous south-central Colorado AFT and AHe work reveals kilometer-scale post-Laramide (Oligo-Miocene) exhumation has occurred in areas that possess thick sedimentary rock sequences whereas exhumation has been negligible where crystalline basement comprises the land surface. </p><p>South-central Colorado’s Sangre de Cristo Mountains consist of an imbricate stack of thrust sheets composed of Permian sedimentary rock. About 30 km farther east stand the Wet Mountains, another Laramide range – but one composed of Precambrian basement rock. The Raton Basin, a SRM foreland basin filled with 2 km of synorogenic fill underlain by a thick sequence of marine shale, lies south and east of the two ranges. The Wet Mountains thus form a peninsula of strong crystalline rock surrounded by more erodible sedimentary rocks to the west, south, and east. </p><p>Our study and that of Landman (2018) records at least 2 km of erosion in the Raton Basin east and south of the Wet Mountains since 25 Ma. Lindsey et al (1986) obtained 24-15 Ma AFT dates from the Paleozoic sedimentary rocks of the Sangre de Cristo Mountains, demonstrating that kilometer-scale Oligo-Miocene exhumation occurred just west of the Wet Mountains. By contrast, Kelley and Chapin (2004) obtained only pre-Laramide AFT ages between 228-110 Ma for 17 samples of Precambrian basement from the crest of the Wet Mountains. A 32 Ma ash flow tuff unconformably overlies Precambrian basement on Greenhorn Mountain, the Wet Mountains’ highest and southernmost peak. Its presence reinforces the conclusion, based on the AFT dates, that Oligo-Miocene erosion of the Wet Mountain massif has been minimal simultaneous with kilometer-scale exhumation to the west, south, and east. These results illustrate the important role that rock strength plays in determining the dates recorded in low-temperature thermochronologic studies.</p>


2019 ◽  
Vol 132 (7-8) ◽  
pp. 1626-1638
Author(s):  
Adam C. Denny ◽  
András Fall ◽  
Ian J. Orland ◽  
John W. Valley ◽  
Peter Eichhubl ◽  
...  

Abstract Oxygen isotope analyses of diagenetic cements can provide detailed evidence of sedimentary burial processes and conditions, as the δ18O values of precipitating minerals reflect contemporaneous local δ18Owater and temperature conditions. Uncertainties in the timing and rates of pore water δ18O evolution in sedimentary basins can complicate interpretation of these records. Fracture-bridging (0.5–1 mm) quartz cements observed in sandstones of the Cretaceous Travis Peak Formation in the East Texas basin show clear growth-zoning by cathodoluminescence and contain detailed fluid inclusion records of temperature that make them excellent candidates for interrogating prolonged histories of basin temperature and the evolution of δ18O in basin pore water. New secondary ion mass spectrometer (SIMS) δ18Oquartz isotopic data from fluid inclusion-rich quartz bridges in Travis Peak sandstones record a steady increase of pore water δ18O values from ∼5 to 7‰ (VSMOW; Vienna Standard Mean Ocean Water) as the sandstone warms from ∼130 to 150 °C. To help evaluate whether this trend could be generated solely from local water-rock interactions in response to burial compaction, a one-dimensional closed system isotopic burial model was created to simulate how δ18Owater values change in a quartz-dominated sandstone during diagenesis. Using both directly measured and inferred rates of Travis Peak compaction, the magnitude of change in δ18Owater that we calculate from quartz bridge geochemistry cannot be reasonably modeled solely by local quartz mechanical compaction, pressure solution, and cementation processes, necessitating significant fluxes of silica and high-δ18O water from outside of the sandstones prior to maximum burial. This indicates that even units which appear surrounded by significant barriers to fluid flow (i.e., mudrock-bounded channel sandstones) may have been infiltrated and diagenetically modified by large fluxes of fluid on geologic time scales.


2014 ◽  
Vol 53 ◽  
pp. 71-87 ◽  
Author(s):  
Thomas Blaise ◽  
Jocelyn Barbarand ◽  
Myriam Kars ◽  
Florian Ploquin ◽  
Charles Aubourg ◽  
...  

2006 ◽  
Vol 2 (2) ◽  
pp. 118-123 ◽  
Author(s):  
Sedara Samuel Omosule ◽  
Joshua E.O

Relatively little expenditure for hydroelectricity and fossil fuels have had a restraining influence on levels of exploration and development for geothermal energy resources in Nigeria for the past several years. The focus of development has been in the areas of low temperature geothermal energy involving the exploration and assessment of hot spring resources primarily for recreational applications – although possibly for other direct uses depending on local infrastructure and access to appropriate energy markets. The geological structure of Nigeria influences geothermal exploration extent within each geological province. Sedimentary basins in Nigeria have been explored for hydrocarbons for several decades, thus the oil companies collected large subsurface temperature data basis. But not much is known about geothermal conditions within Nigerian Precambrian crystalline province. On the basis of BHT data from oil wells it has been found that geothermal gradient in Niger Delta ranges from 1.5 to 4.9°C/100m and in Anambra Basin (directly to the north) it can reach 5.7°C/100m. Exploration for geothermal energy in northern Nigeria based on shallow water wells (down to 600 m deep) was carried out over 20 years ago. The other aspect of geothermal exploration in Nigeria is investigating of the thermal springs and seepages, which occur mainly within sediments of the Middle and Upper Benue Trough. The water of the warmest springs in that area: Akiri and Ruwan Zafi have the temperature about 56°C and it suggests the occurrence of some geothermal anomalies. So far, there are probably only three (direct) geothermal energy utilisation sites in Nigeria. The Ikogosi warm spring (37°C) located in south-western part of the country, in Ekiti state, the Wikki warm spring (39°C) located in Bauchi (North-eastern) part of Nigeria and the Rafin Rewa spring (42°C) located in Plateau (North-central) state of Nigeria. Hence this paper reviews the current status of the geothermal industry (both high and low temperature) in Nigeria.


Sign in / Sign up

Export Citation Format

Share Document