Molecular dynamics study of the hydrophobic 6,6-ionene oligocation in aqueous solution with sodium halides

2010 ◽  
Vol 82 (10) ◽  
pp. 1943-1955 ◽  
Author(s):  
Maksym Druchok ◽  
Vojko Vlachy

An explicit water molecular dynamics (MD) simulation is presented of a solution modeling aliphatic 6,6-ionene oligocations mixed with low-molecular-weight electrolytes. In all cases, the co-ions were sodium cations and the counterions were fluoride, chloride, bromide, or iodide anions. The simple point charge/extended (SPC/E) model was used to describe water. The results of the simulation at T = 278 K (the data for 298 K were obtained earlier) and T = 318 K are presented in the form of pair distributions between various atoms and/or between ions in the system. We were interested in how temperature variation modifies the ion-specific effects, revealed by the various pair distribution functions (PDFs). The results were compared with previous calculations for the less hydrophobic 3,3-ionene solutions. Simulations of 6,6-ionene solutions containing mixtures of fluoride and iodide counter-ions at T = 298 K were also presented.

2010 ◽  
Vol 72 ◽  
pp. 337-342
Author(s):  
Masakazu Yarimitsu ◽  
Masaru Aniya

The pressure dependence of the diffusion coefficient in the superionic α- and β-phases of Ag3SI has been studied by using the method of molecular dynamics. It is shown that in the high temperature α-phase, the Ag diffusion coefficient decreases with pressure. On the hand, in the intermediate temperature β-phase, the Ag diffusion coefficient exhibits a maximum at around 2.8 GPa. The structural origin of this behavior is discussed through the pressure dependence of the pair distribution functions.


2014 ◽  
Vol 1035 ◽  
pp. 502-507
Author(s):  
Li An Chen

The structure and properties of the GexAsxS100-2x have been studied by ab initio molecular dynamics simulation. By calculating the pair distribution functions, bond angle distribution functions, we analyze the structure and properties of the alloys. Calculations show that Ge and As are all well combined with S atoms. When x is smaller than 25.0 the binding increases with x , when x is larger than 25.0 the binding decreases with increasing x . The intervention of As atom does not affect the GeS2 formation in Ge40As40S80


2021 ◽  
Vol 32 ◽  
Author(s):  
Hang Thi Thuy Nguyen

The heating process of zigzag silicon carbide nanoribbon (SiCNR) is studied via molecular dynamics (MD) simulation. The initial model contained 10000 atoms is heating from 50K to 6000K to study the structural evolution of zigzag SiCNR. The melting point is defined at 4010K, the phase transition from solid to liquid exhibits the first-order type. The mechanism of structural evolution upon heating is studied based on the radiral distribution functions, coordination number, ring distributions, and angle distributions.


1992 ◽  
Vol 70 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Ramesh K. Wadi ◽  
Vivek Saxena

The results of a molecular dynamics (MD) simulation study of liquid chlorine trifluoride (ClF3) at 217, 260, and 287 K are reported. The cubic simulation cell consists of 108 ClF3 molecules assumed to be interacting via site–site Lennard–Jones 12–6 pair potential. The parameters for F–F and Cl–Cl interaction are the same as used for the simulation of F2, and Cl2, respectively, and those for the Cl–F cross interaction are calculated using Lorentz–Berthelot rules. These results are then used to calculate various radial distribution functions characteristic of the liquid structure. Thermodynamic properties, namely, configurational energy, constant volume specific heat, and internal pressure are also reported. The time-dependent properties, mean square force and torque, self diffusion coefficient, and the quantum corrections to the free energy, were also obtained. The dimer configuration drawn based on the observed contact distances was found to be in good agreement with the results of matrix isolation infrared and laser Raman spectroscopic studies. Keywords: MD simulation, interhalogens, liquid structure, thermodynamic properties.


Soft Matter ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 721-733 ◽  
Author(s):  
Spyros V. Kallivokas ◽  
Aristotelis P. Sgouros ◽  
Doros N. Theodorou

Partial pair distribution functions, XRD patterns, segmental dynamics, elastic constants and glass temperature in EPON862/DETDA epoxy predicted through molecular dynamics.


Sign in / Sign up

Export Citation Format

Share Document