scholarly journals The irreducible components of the primal cohomology of the theta divisor of an abelian fivefold

2020 ◽  
Vol 142 (5) ◽  
pp. 1409-1438
Author(s):  
Elham Izadi ◽  
Jie Wang
2021 ◽  
Vol 33 (1) ◽  
pp. 47-56
Author(s):  
S. Buyalo

Orthogonal representations η n : S n ↷ R N \eta _n\colon S_n\curvearrowright \mathbb {R}^N of the symmetric groups S n S_n , n ≥ 4 n\ge 4 , with N = n ! / 8 N=n!/8 , emerging from symmetries of double ratios are treated. For n = 5 n=5 , the representation η 5 \eta _5 is decomposed into irreducible components and it is shown that a certain component yields a solution of the equations that describe the Möbius structures in the class of sub-Möbius structures. In this sense, a condition determining the Möbius structures is implicit already in symmetries of double ratios.


2017 ◽  
Vol 3 (3) ◽  
pp. 423-443
Author(s):  
Cordian Riener ◽  
Nicolai Vorobjov

2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


2012 ◽  
Vol 23 (04) ◽  
pp. 1250031 ◽  
Author(s):  
JOSÉ F. FERNANDO ◽  
J. M. GAMBOA

In this work we define a semialgebraic set S ⊂ ℝn to be irreducible if the noetherian ring [Formula: see text] of Nash functions on S is an integral domain. Keeping this notion we develop a satisfactory theory of irreducible components of semialgebraic sets, and we use it fruitfully to approach four classical problems in Real Geometry for the ring [Formula: see text]: Substitution Theorem, Positivstellensätze, 17th Hilbert Problem and real Nullstellensatz, whose solution was known just in case S = M is an affine Nash manifold. In fact, we give full characterizations of the families of semialgebraic sets for which these classical results are true.


2021 ◽  
Author(s):  
◽  
Aaron Armour

<p><b>The algebraic and geometric classification of k-algbras, of dimension fouror less, was started by Gabriel in “Finite representation type is open” [12].</b></p> <p>Several years later Mazzola continued in this direction with his paper “Thealgebraic and geometric classification of associative algebras of dimensionfive” [21]. The problem we attempt in this thesis, is to extend the resultsof Gabriel to the setting of super (or Z2-graded) algebras — our main effortsbeing devoted to the case of superalgebras of dimension four. Wegive an algebraic classification for superalgebras of dimension four withnon-trivial Z2-grading. By combining these results with Gabriel’s we obtaina complete algebraic classification of four dimensional superalgebras.</p> <p>This completes the classification of four dimensional Yetter-Drinfeld modulealgebras over Sweedler’s Hopf algebra H4 given by Chen and Zhangin “Four dimensional Yetter-Drinfeld module algebras over H4” [9]. Thegeometric classification problem leads us to define a new variety, Salgn —the variety of n-dimensional superalgebras—and study some of its properties.</p> <p>The geometry of Salgn is influenced by the geometry of the varietyAlgn yet it is also more complicated, an important difference being thatSalgn is disconnected. While we make significant progress on the geometricclassification of four dimensional superalgebras, it is not complete. Wediscover twenty irreducible components of Salg4 — however there couldbe up to two further irreducible components.</p>


10.37236/1809 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Anthony Mendes ◽  
Jeffrey Remmel ◽  
Jennifer Wagner

A $\lambda$-ring version of a Frobenius characteristic for groups of the form $G \wr S_n$ is given. Our methods provide natural analogs of classic results in the representation theory of the symmetric group. Included is a method decompose the Kronecker product of two irreducible representations of $G\wr S_n$ into its irreducible components along with generalizations of the Murnaghan-Nakayama rule, the Hall inner product, and the reproducing kernel for $G\wr S_n$.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Christof Geiß ◽  
Daniel Labardini-Fragoso ◽  
Jan Schröer

AbstractWe study the affine schemes of modules over gentle algebras. We describe the smooth points of these schemes, and we also analyze their irreducible components in detail. Several of our results generalize formerly known results, e.g. by dropping acyclicity, and by incorporating band modules. A special class of gentle algebras are Jacobian algebras arising from triangulations of unpunctured marked surfaces. For these we obtain a bijection between the set of generically $$\tau $$ τ -reduced decorated irreducible components and the set of laminations of the surface. As an application, we get that the set of bangle functions (defined by Musiker–Schiffler–Williams) in the upper cluster algebra associated with the surface coincides with the set of generic Caldero-Chapoton functions (defined by Geiß–Leclerc–Schröer).


2007 ◽  
Vol 18 (05) ◽  
pp. 535-558 ◽  
Author(s):  
QUANG MINH NGUYEN

Let C be a curve of genus two. We denote by [Formula: see text] the moduli space of semi-stable vector bundles of rank 3 and trivial determinant over C, and by Jd the variety of line bundles of degree d on C. In particular, J1 has a canonical theta divisor Θ. The space [Formula: see text] is a double cover of ℙ8 = |3Θ| branched along a sextic hypersurface, the Coble sextic. In the dual [Formula: see text], where J1 is embedded, there is a unique cubic hypersurface singular along J1, the Coble cubic. We prove that these two hypersurfaces are dual, inducing a non-abelian Torelli result. Moreover, by looking at some special linear sections of these hypersurfaces, we can observe and reinterpret some classical results of algebraic geometry in a context of vector bundles: the duality of the Segre–Igusa quartic with the Segre cubic, the symmetric configuration of 15 lines and 15 points, the Weddle quartic surface and the Kummer surface.


Sign in / Sign up

Export Citation Format

Share Document