Human Skin Color: A Possible Relationship Between Its Sexual Dimorphism and Its Social Perception

1988 ◽  
Vol 32 (1) ◽  
pp. 38-58 ◽  
Author(s):  
Peter Frost
Author(s):  
Grace L. Samson ◽  
Joan Lu

AbstractWe present a new detection method for color-based object detection, which can improve the performance of learning procedures in terms of speed, accuracy, and efficiency, using spatial inference, and algorithm. We applied the model to human skin detection from an image; however, the method can also work for other machine learning tasks involving image pixels. We propose (1) an improved RGB/HSL human skin color threshold to tackle darker human skin color detection problem. (2), we also present a new rule-based fast algorithm (packed k-dimensional tree --- PKT) that depends on an improved spatial structure for human skin/face detection from colored 2D images. We also implemented a novel packed quad-tree (PQT) to speed up the quad-tree performance in terms of indexing. We compared the proposed system to traditional pixel-by-pixel (PBP)/pixel-wise (PW) operation, and quadtree based procedures. The results show that our proposed spatial structure performs better (with a very low false hit rate, very high precision, and accuracy rate) than most state-of-the-art models.


2011 ◽  
Vol 55-57 ◽  
pp. 77-81
Author(s):  
Hui Ming Huang ◽  
He Sheng Liu ◽  
Guo Ping Liu

In this paper, we proposed an efficient method to address the problem of color face image segmentation that is based on color information and saliency map. This method consists of three stages. At first, skin colored regions is detected using a Bayesian model of the human skin color. Then, we get a chroma chart that shows likelihoods of skin colors. This chroma chart is further segmented into skin region that satisfy the homogeneity property of the human skin. The third stage, visual attention model are employed to localize the face region according to the saliency map while the bottom-up approach utilizes both the intensity and color features maps from the test image. Experimental evaluation on test shows that the proposed method is capable of segmenting the face area quite effectively,at the same time, our methods shows good performance for subjects in both simple and complex backgrounds, as well as varying illumination conditions and skin color variances.


Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


Sign in / Sign up

Export Citation Format

Share Document