scholarly journals Thymic Cystic Degeneration, Pseudoepitheliomatous Hyperplasia, and Hemorrhage in a Dog with Brodifacoum Toxicosis

2009 ◽  
Vol 46 (3) ◽  
pp. 449-452 ◽  
Author(s):  
B. H. Rickman ◽  
N. Gurfield

Thymic cysts with pseudoepitheliomatous hyperplasia are described in a 7-month-old female American Eskimo Dog that died of complications from brodifacoum poisoning. Grossly, there was hemothorax with marked cranial mediastinal hemorrhage. Histologically, thymic lobules were expanded and distorted by irregular cysts, lined by single to multiple layers of plump to slightly attenuated polygonal squamous epithelial cells supported by a basement membrane (pseudoepitheliomatous hyperplasia). The thymus had a paucity of lymphocytes and lacked corticomedullary differentiation. Extensive hemorrhage within the cysts and thymic parenchyma extended into the adjacent adipose tissue. To the authors' knowledge, this is the first report of cystic thymic degeneration with pseudoepitheliomatous hyperplasia in a nonhuman species.

2016 ◽  
Vol 90 (23) ◽  
pp. 10945-10950 ◽  
Author(s):  
Jochen A. S. Lamote ◽  
Sarah Glorieux ◽  
Hans J. Nauwynck ◽  
Herman W. Favoreel

ABSTRACT Passage of the basement membrane (BM), which forms a barrier between the epithelium and the underlying lamina propria, represents an important step in the early pathogenesis of different alphaherpesviruses. Rho GTPase signaling plays an important role in transmigration of cells across the BM during physiological and pathological processes. We reported earlier that the US3 protein kinase of the alphaherpesvirus pseudorabies virus (PRV) interferes with Rho GTPase signaling and causes a reorganization of the host cell cytoskeleton, which as a consequence, enhances viral cell-to-cell spread in epithelial cell cultures. Here, using an ex vivo system of porcine nasal respiratory mucosa explants that allows to study PRV invasion through the BM, we found that a PRV strain that lacks US3 expression (ΔUS3 PRV) showed a reduced spread in mucosal epithelium and was virtually unable to breach the BM, in contrast to isogenic wild-type (WT) or US3 rescue PRV strains. Interestingly, addition of IPA3, an inhibitor of p21-activated kinases that blocks the effects of US3 on the cytoskeleton, suppressed the ability of WT PRV to spread across the BM. In addition, artificial suppression of RhoA signaling using CPC3 (cell-permeable C3 transferase) to mimic the effects of US3 on Rho GTPase signaling, significantly increased passage of ΔUS3 PRV through the BM, whereas it did not significantly affect BM passage of WT or US3 rescue PRV. In conclusion, these data indicate that US3 plays an important role in PRV mucosal invasion across the BM, which involves its interference with Rho GTPase signaling. This is the first report describing an alphaherpesvirus protein that drives viral BM passage. IMPORTANCE Many viruses, including alphaherpesviruses, primarily replicate in epithelial cells of surface mucosae, such as the respiratory mucosa. Some of these viruses breach the basement membrane underlying these epithelial cells to reach underlying connective tissue and blood vessels and invade the host. Hence, epithelial spread and basement membrane passage represent crucial but still poorly understood early steps in (alphaherpes)virus pathogenesis. Here, using ex vivo porcine respiratory mucosa explants, we show that the conserved US3 protein of the porcine alphaherpesvirus pseudorabies virus (PRV) is critical for passage of PRV across the basement membrane and contributes to efficient viral epithelial spread. In addition, we show that US3-mediated viral epithelial spread and passage across the basement membrane depend at least in part on the ability of this viral protein to modulate cellular Rho GTPase signaling. This is the first report that identifies an alphaherpesvirus protein that drives viral basement membrane passage.


1980 ◽  
Vol 17 (6) ◽  
pp. 699-719 ◽  
Author(s):  
P. Schneider ◽  
G. Pappritz ◽  
R. Müller-Peddinghaus ◽  
M. Bauer ◽  
H. Lehmann ◽  
...  

A nephropathy with severe tubular atrophy was observed in Beagle dogs after oral administration of K2HPO4 for 14 or 38 weeks. We describe the complete lysosomal degradation of atrophying tubular epithelial cells. During two experiments of 14 and 38 weeks duration, respectively, a total of 15 Beagle dogs received 0.8 g K2HPO4/kg body weight daily with their food. All dogs were examined clinically at regular intervals. Renal biopsies were taken in the fourth week from beagles of the 14-week study. Results were compared with those of control dogs. At the end of the experiments the animals were killed and necropsies done. Different stains and histochemical reactions were applied to paraffin sections of the kidneys. Acid phosphatase and β-glucuronidase were found on cryostat sections. Kidneys fixed by perfusion of five Beagles from the 38-week study and three Beagles of the 14-week study, and from five control dogs, were examined electron microscopically. Ultrahistochemically, acid phosphatase was demonstrated. Clinically, the dogs in both experiments vomited, were cachectic, and had elevated creatinine and blood urea nitrogen. Morphologically, qualitatively identical changes were seen, but the renal damage was most marked at 38 weeks. There were disseminated tubular atrophy (usually of the proximal tubules), focal scar tissue and nephrocalcinosis. The following pathogenesis was established for the lesions of the proximal tubule: Tubular atrophy begins with loss of differentiation of epithelial cells. Enzyme histochemistry, ultrahistochemistry and electron microscopy show an increase in autophagic vacuoles and autophagolysosomes. The lysosomal bodies showing fusion enclose large parts of the cytoplasm as the process continues. Complete lysosomal degradation of epithelial cells and extrusion of large lysosomes into the tubular lumen follow. After complete enzymatic digestion of the intratubular detritus, the residue is empty, convoluted and collapsed tubular basement membrane. Atrophic tubular epithelial cells have many organelle-free zones at their base, which contain fine filamentous material resembling that of the basement membrane. The degradation processes described here may explain why clinically the urinary sediment contains few cylinders and epithelial cells and why proteinuria decreases significantly toward the end of the experiment. So far, it is not clear whether the tubular basement membrane is synthesized by the tubular cells, by fibroblasts or by both cell types. The presence of basement membrane-like material in tubular epithelial cells and in parietal epithelial cells of the glomerulus favors the view that epithelial cells produce the basement membranes and that increased production of basement membrane-like material is a sign of loss of differentiation.


Cell ◽  
1980 ◽  
Vol 22 (3) ◽  
pp. 719-726 ◽  
Author(s):  
Victor P. Terranova ◽  
David H. Rohrbach ◽  
George R. Martin

2001 ◽  
Vol 280 (1) ◽  
pp. L30-L38 ◽  
Author(s):  
Jun Araya ◽  
Muneharu Maruyama ◽  
Kazuhiko Sassa ◽  
Tadashi Fujita ◽  
Ryuji Hayashi ◽  
...  

Radiation pneumonitis is a major complication of radiation therapy. However, the detailed cellular mechanisms have not been clearly defined. Based on the recognition that basement membrane disruption occurs in acute lung injury and that matrix metalloproteinase (MMP)-2 can degrade type IV collagen, one of the major components of the basement membrane, we hypothesized that ionizing radiation would modulate MMP-2 production in human lung epithelial cells. To evaluate this, the modulation of MMP-2 with irradiation was investigated in normal human bronchial epithelial cells as well as in A549 cells. We measured the activity of MMP-2 in the conditioned medium with zymography and the MMP-2 mRNA level with RT-PCR. Both of these cells constitutively expressed 72-kDa gelatinolytic activity, corresponding to MMP-2, and exposure to radiation increased this activity. Consistent with the data of zymography, ionizing radiation increased the level of MMP-2 mRNA. This radiation-induced increase in MMP-2 expression was mediated via p53 because the p53 antisense oligonucleotide abolished the increase in MMP-2 activity as well as the accumulation of p53 after irradiation in A549 cells. These results indicate that MMP-2 expression by human lung epithelial cells is involved in radiation-induced lung injury.


2014 ◽  
Vol 307 (8) ◽  
pp. E674-E685 ◽  
Author(s):  
Abby L. Johnson ◽  
Glendon M. Zinser ◽  
Susan E. Waltz

Vitamin D3 receptor (VDR) signaling within the mammary gland regulates various postnatal stages of glandular development, including puberty, pregnancy, involution, and tumorigenesis. Previous studies have shown that vitamin D3 treatment induces cell-autonomous growth inhibition and differentiation of mammary epithelial cells in culture. Furthermore, mammary adipose tissue serves as a depot for vitamin D3 storage, and both epithelial cells and adipocytes are capable of bioactivating vitamin D3. Despite the pervasiveness of VDR in mammary tissue, individual contributions of epithelial cells and adipocytes, as well as the VDR-regulated cross-talk between these two cell types during pubertal mammary development, have yet to be investigated. To assess the cell-type specific effect of VDR signaling during pubertal mammary development, novel mouse models with mammary epithelial- or adipocyte-specific loss of VDR were generated. Interestingly, loss of VDR in either cellular compartment accelerated ductal morphogenesis with increased epithelial cell proliferation and decreased apoptosis within terminal end buds. Conversely, VDR signaling specifically in the mammary epithelium modulated hormone-induced alveolar growth, as ablation of VDR in this cell type resulted in precocious alveolar development. In examining cellular cross-talk ex vivo, we show that ligand-dependent VDR signaling in adipocytes significantly inhibits mammary epithelial cell growth in part through the vitamin D3-dependent production of the cytokine IL-6. Collectively, these studies delineate independent roles for vitamin D3-dependent VDR signaling in mammary adipocytes and epithelial cells in controlling pubertal mammary gland development.


2007 ◽  
Vol 359 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Hoshiba Takashi ◽  
Mochitate Katsumi ◽  
Akaike Toshihiro

2018 ◽  
Vol 58 (4) ◽  
pp. 257-260 ◽  
Author(s):  
Janos Bokor ◽  
Krisztina Danics ◽  
Eva Keller ◽  
Zoltan Szollosi

Ethylene glycol (EG) may be acutely toxic following ingestion. In fatal cases, microscopic examination of urine and kidney specimens can establish a post-mortem diagnosis of EG poisoning. We describe the main renal histopathologic changes during different stages of EG poisoning, which might be helpful when dating the EG poisoning itself. A single-centre retrospective study conducted on all EG poisoning cases demonstrated that in an early stage of EG poisoning, fine dust-like crystals were deposited to the tubular cell basement membrane, followed by internalisation of calcium oxalate crystals into the epithelial cells. Later, the crystals formed larger aggregates within the epithelial cells. As the changes became advanced, pronounced tubular epithelial damage occurred, with detachment of epithelial cells from the basement membrane. In the final stage, coarse calcium oxalate crystals were recognised in the tubular lumen, with cellular debris from damaged epithelial cells. Our study shows that the time-dependent histological changes described follow the clinical stages of EG poisoning and may therefore provide a rough estimate of the time of EG ingestion before death.


Sign in / Sign up

Export Citation Format

Share Document