scholarly journals Multimode waveguide crossing based on a square Maxwell’s fisheye lens

2019 ◽  
Vol 58 (17) ◽  
pp. 4647 ◽  
Author(s):  
S. Hadi Badri ◽  
H. Rasooli Saghai ◽  
Hadi Soofi
2018 ◽  
Vol 12 (10) ◽  
pp. 1800094 ◽  
Author(s):  
Hongnan Xu ◽  
Yaocheng Shi

2019 ◽  
Vol 21 (6) ◽  
pp. 065102 ◽  
Author(s):  
S Hadi Badri ◽  
H Rasooli Saghai ◽  
Hadi Soofi

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3254
Author(s):  
Yuri Hayashi Isayama ◽  
Hugo Enrique Hernández-Figueroa

A generalization of the concept of multimode interference sensors is presented here for the first time, to the best of our knowledge. The existing bimodal and trimodal sensors correspond to particular cases of those interference sensors. A thorough study of the properties of the multimode waveguide section provided a deeper insight into the behavior of this class of sensors, which allowed us to establish new criteria for designing more sensitive structures. Other challenges of using high-order modes within the sensing area of the device reside in the excitation of these modes and the interpretation of the output signal. To overcome these, we developed a novel structure to excite any desired high-order mode along with the fundamental mode within the sensing section, while maintaining a fine control over the power distribution between them. A new strategy to detect and interpret the output signal is also presented in detail. Finally, we designed a high-order sensor for which numerical simulations showed a theoretical limit of detection of 1.9×10−7 RIU, making this device the most sensitive multimode interference sensor reported so far.


Optik ◽  
2016 ◽  
Vol 127 (14) ◽  
pp. 5636-5646 ◽  
Author(s):  
Hyungtae Kim ◽  
Jaehoon Jung ◽  
Joonki Paik

2014 ◽  
Vol 519-520 ◽  
pp. 636-639
Author(s):  
Bao Long Zhang ◽  
Shao Jing Zhang ◽  
Wei Qi Ding ◽  
Hui Shuang Shi

The fisheye lens is a kind of ultra wide angle lens, which can produce a big super-wide-angle lens distortion. In order to cover a large scope of light, barrel distortion is artificially added to the optical system. However, in some cases this distortion is not allowed, then it requires calibrations of those distortions. Most of the traditional distortion calibration method uses target plane calibration to do it. This paper discusses the way of design fisheye lens, through which we can know the forming process of distortion clearly. Based on this paper, a simple and effective calibration method can be understood. Different from common camera calibration method, the proposed calibration method can avoid the error occurring in the process of calibrating test, that directly use the lens’ characteristic curve. Through multiple sets of experimental verifications, this method is effective and feasible.


Sign in / Sign up

Export Citation Format

Share Document