Open-Path Dual Frequency Comb Spectroscopy Applied to Source Quantification

Author(s):  
Eleanor M. Waxman ◽  
Kevin C. Cossel ◽  
Fabrizio R. Giorgetta ◽  
Eli Hoenig ◽  
Gar-Wing Truong ◽  
...  
2017 ◽  
Author(s):  
Eleanor M. Waxman ◽  
Kevin C. Cossel ◽  
Gar-Wing Truong ◽  
Fabrizio R. Giorgetta ◽  
William C. Swann ◽  
...  

Abstract. We present the first quantitative intercomparison between two open-path dual comb spectroscopy (DCS) instruments which were operated across adjacent 2-km open-air paths over a two-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6021 to 6388 cm−1 (1565 to 1661 nm), corresponding to a 367 cm−1 bandwidth, at 0.0067 cm−1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10−4 without any external calibration of either instrument. The absorption spectra are fit to retrieve concentrations for carbon dioxide (CO2), methane (CH4), water (H2O), and deuterated water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO2, 0.35 % (7 ppb) for CH4, and 0.40 % (36 ppm) for H2O over the two-week measurement campaign, which included 23 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a WMO-calibrated cavity ringdown point sensor located along the path with good agreement. Short-term and long-term differences between the two systems are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the two-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4.


2017 ◽  
Vol 10 (9) ◽  
pp. 3295-3311 ◽  
Author(s):  
Eleanor M. Waxman ◽  
Kevin C. Cossel ◽  
Gar-Wing Truong ◽  
Fabrizio R. Giorgetta ◽  
William C. Swann ◽  
...  

Abstract. We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS) instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm−1 (1568 to 1660 nm), corresponding to a 355 cm−1 bandwidth, at 0.0067 cm−1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10−4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO2), methane (CH4), water (H2O), and deuterated water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO2, 0.35 % (7 ppb) for CH4, and 0.40 % (36 ppm) for H2O at  ∼  30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO)-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4.


Author(s):  
Kevin Cossel ◽  
Nathan Newbury ◽  
Ian Coddington ◽  
Greg Rieker ◽  
Robert Wright ◽  
...  

2018 ◽  
Vol 11 (3) ◽  
pp. 1565-1582 ◽  
Author(s):  
Caroline B. Alden ◽  
Subhomoy Ghosh ◽  
Sean Coburn ◽  
Colm Sweeney ◽  
Anna Karion ◽  
...  

Abstract. Advances in natural gas extraction technology have led to increased activity in the production and transport sectors in the United States and, as a consequence, an increased need for reliable monitoring of methane leaks to the atmosphere. We present a statistical methodology in combination with an observing system for the detection and attribution of fugitive emissions of methane from distributed potential source location landscapes such as natural gas production sites. We measure long (> 500 m), integrated open-path concentrations of atmospheric methane using a dual frequency comb spectrometer and combine measurements with an atmospheric transport model to infer leak locations and strengths using a novel statistical method, the non-zero minimum bootstrap (NZMB). The new statistical method allows us to determine whether the empirical distribution of possible source strengths for a given location excludes zero. Using this information, we identify leaking source locations (i.e., natural gas wells) through rejection of the null hypothesis that the source is not leaking. The method is tested with a series of synthetic data inversions with varying measurement density and varying levels of model–data mismatch. It is also tested with field observations of (1) a non-leaking source location and (2) a source location where a controlled emission of 3.1  ×  10−5 kg s−1 of methane gas is released over a period of several hours. This series of synthetic data tests and outdoor field observations using a controlled methane release demonstrates the viability of the approach for the detection and sizing of very small leaks of methane across large distances (4+ km2 in synthetic tests). The field tests demonstrate the ability to attribute small atmospheric enhancements of 17 ppb to the emitting source location against a background of combined atmospheric (e.g., background methane variability) and measurement uncertainty of 5 ppb (1σ), when measurements are averaged over 2 min. The results of the synthetic and field data testing show that the new observing system and statistical approach greatly decreases the incidence of false alarms (that is, wrongly identifying a well site to be leaking) compared with the same tests that do not use the NZMB approach and therefore offers increased leak detection and sizing capabilities.


2016 ◽  
Vol 24 (26) ◽  
pp. 30100 ◽  
Author(s):  
Francisco S. Vieira ◽  
Flavio C. Cruz ◽  
David F. Plusquellic ◽  
Scott A. Diddams

2022 ◽  
Author(s):  
David Yun ◽  
Ryan K. Cole ◽  
Sean C. Coburn ◽  
Kristin M. Rice ◽  
Jeffrey M. Donbar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document