Maximum-likelihood estimation of model parameters for experiments with pulsed lasers

Author(s):  
Thomas Metz ◽  
Joachim Walewski ◽  
Clemens F. Kaminski
2019 ◽  
Vol 36 (10) ◽  
pp. 2352-2357
Author(s):  
David A Shaw ◽  
Vu C Dinh ◽  
Frederick A Matsen

Abstract Maximum likelihood estimation in phylogenetics requires a means of handling unknown ancestral states. Classical maximum likelihood averages over these unknown intermediate states, leading to provably consistent estimation of the topology and continuous model parameters. Recently, a computationally efficient approach has been proposed to jointly maximize over these unknown states and phylogenetic parameters. Although this method of joint maximum likelihood estimation can obtain estimates more quickly, its properties as an estimator are not yet clear. In this article, we show that this method of jointly estimating phylogenetic parameters along with ancestral states is not consistent in general. We find a sizeable region of parameter space that generates data on a four-taxon tree for which this joint method estimates the internal branch length to be exactly zero, even in the limit of infinite-length sequences. More generally, we show that this joint method only estimates branch lengths correctly on a set of measure zero. We show empirically that branch length estimates are systematically biased downward, even for short branches.


2021 ◽  
pp. 125-148
Author(s):  
Timothy E. Essington

The chapter “Likelihood and Its Applications” introduces the likelihood concept and the concept of maximum likelihood estimation of model parameters. Likelihood is the link between data and models. It is used to estimate model parameters, judge the degree of precision of parameter estimates, and weight support for alternative models. Likelihood is therefore a crucial concept that underlies the ability to test multiple models. The chapter contains several worked examples that progress the reader through increasingly complex problems, ending at likelihood profiles for models with multiple parameters. Importantly, it illustrates how one can take any dynamic model and data and use likelihood to link the data (random variables) to a probability function that depends on the dynamic model.


Sign in / Sign up

Export Citation Format

Share Document