JCAMP-DX for NMR

1993 ◽  
Vol 47 (8) ◽  
pp. 1093-1099 ◽  
Author(s):  
Antony N. Davies ◽  
Peter Lampen

Following the development and publication of the JCAMP-DX protocol 4.24 and its successful implementation in the field of infrared spectroscopy, data exchange without loss of information, between systems of different origin and internal format, has become a reality. The benefits of this system-independent data transfer standard have been recognized by workers in other areas who have expressed a wish for an equivalent, compatible standard in their own fields. This publication details a protocol for the exchange of Nuclear Magnetic Resonance (NMR) spectral data without any loss of information and in a format that is compatible with all storage media and computer systems. The protocol detailed below is designed for spectral data transfer, and its use for NMR imaging data transfer has not as yet been investigated.

1994 ◽  
Vol 48 (12) ◽  
pp. 1545-1552 ◽  
Author(s):  
Peter Lampen ◽  
Heinrich Hillig ◽  
Antony N. Davies ◽  
Michael Linscheid

JCAMP-DX has, for several years, been the standard form for the exchange of infrared spectral data. More recently JCAMP-DX protocols have been published for chemical structure data and for nuclear magnetic resonance spectroscopy. This publication presents a new JCAMP-DX data exchange protocol for mass spectrometry, covering the transport of single spectra, spectral series, and raw data files. The protocol can be implemented on any computer system and storage media. It is completely manufacturer independent. As with previous publications in this series, the aim is to provide reliable data transfer without loss of information regardless of the hardware or software involved. A comparison to the work on a binary protocol currently being carried out by the Analytical Instrument Association is also presented.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo-yong Park ◽  
Seok-Jun Hong ◽  
Sofie L. Valk ◽  
Casey Paquola ◽  
Oualid Benkarim ◽  
...  

AbstractThe pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism.


Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 21 ◽  
Author(s):  
Abe Zeid ◽  
Sarvesh Sundaram ◽  
Mohsen Moghaddam ◽  
Sagar Kamarthi ◽  
Tucker Marion

Recent advances in manufacturing technology, such as cyber–physical systems, industrial Internet, AI (Artificial Intelligence), and machine learning have driven the evolution of manufacturing architectures into integrated networks of automation devices, services, and enterprises. One of the resulting challenges of this evolution is the increased need for interoperability at different levels of the manufacturing ecosystem. The scope ranges from shop–floor software, devices, and control systems to Internet-based cloud-platforms, providing various services on-demand. Successful implementation of interoperability in smart manufacturing would, thus, result in effective communication and error-prone data-exchange between machines, sensors, actuators, users, systems, and platforms. A significant challenge to this is the architecture and the platforms that are used by machines and software packages. A better understanding of the subject can be achieved by studying industry-specific communication protocols and their respective logical semantics. A review of research conducted in this area is provided in this article to gain perspective on the various dimensions and types of interoperability. This article provides a multi-faceted approach to the research area of interoperability by reviewing key concepts and existing research efforts in the domain, as well as by discussing challenges and solutions.


Author(s):  
Srinivasa P. Varanasi ◽  
Athamaram H. Soni

Abstract Data exchange between different CAD systems usually requires conversion between different representations of free-form curves and surfaces. Also, trimmed surfaces give rise to high degree boundary curves. Accurate conversion of these forms becomes necessary for reliable data transfer. Also important is the issue of shape control, specially in the aircraft industry. The objective of this paper is to investigate conversion methods and effect of shape control on the design and choice of such methods.


1988 ◽  
Vol 6 (5) ◽  
pp. XII
Author(s):  
Leon Kaufman ◽  
Lawrence Crooks ◽  
Douglas A Ortendahl

COVID ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 717-727
Author(s):  
Parastoo Kheiroddin ◽  
Magdalena Gründl ◽  
Michael Althammer ◽  
Patricia Schöberl ◽  
Linda Plail ◽  
...  

(1) Background: With vaccination and new variants of SARS-CoV-2 on the horizon, efficient testing in schools may enable prevention of mass infection outbreaks, keeping schools safe places and buying time until decisions on feasibility and the necessity of vaccination in children and youth are made. We established, in the course of the WICOVIR (Where Is the COrona VIRus) study, that gargle-based pool-PCR testing offers a feasible, efficient, and safe testing system for schools in Germany when applied by central university laboratories. (2) Objectives: We evaluated whether this approach can be implemented in different rural and urban settings. (3) Methods: We assessed the arrangements required for successful implementation of the WICOVIR approach in a variety of settings in terms of transport logistics, data transfer and pre-existing laboratory set-up, as well as the time required to establish the set-up. (4) Results: We found that once regulatory issues have been overcome, all challenges pertaining to logistics, data transfer, and laboratory testing on different platforms can be solved within one month. Pooling and depooling of samples down to the individual test result were achievable within one working day in all settings. Local involvement of the community and decentralized set-ups were keys for success. (5) Conclusion: The WICOVIR gargle-based pool-PCR system is so robust and simple that it can be implemented within one month in all settings now or in future pandemics.


Author(s):  
Hoang Dang Hai ◽  
Thorsten Strufe ◽  
Pham Thieu Nga ◽  
Hoang Hong Ngoc ◽  
Nguyen Anh Son ◽  
...  

Sparse  Wireless  Sensor  Networks  using several  mobile  nodes  and  a  small  number  of  static sensor  nodes  have  been  widely  used  for  many applications,  especially  for  traffic-generated  pollution monitoring.  This  paper  proposes  a  method  for  data collection and forwarding using Mobile Elements (MEs), which are moving on predefined trajectories in contrast to previous works that use a mixture of MEsand static nodes. In our method, MEscan be used as data collector as well as dynamic bridges for data transfer. We design the  trajectories  in  such  a  way,  that  they  completely cover  the  deployed  area  and  data  will  be  gradually forwarded  from  outermost  trajectories  to  the  center whenever  a  pair  of MEs contacts  each  other  on  an overlapping road distance of respective trajectories. The method  is based  on  direction-oriented  level  and  weight assignment.  We  analyze  the  contact  opportunity  for data  exchange  while MEs move.  The  method  has  been successfully tested for traffic pollution monitoring in an urban area.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexandra M. Reardon ◽  
Kaiming Li ◽  
Xiaoping P. Hu

Background: Multi-site functional MRI (fMRI) databases are becoming increasingly prevalent in the study of neurodevelopmental and psychiatric disorders. However, multi-site databases are known to introduce site effects that may confound neurobiological and measures such as functional connectivity (FC). Although studies have been conducted to mitigate site effects, these methods often result in reduced effect size in FC comparisons between controls and patients.Methods: We present a site-wise de-meaning (SWD) strategy in multi-site FC analysis and compare its performance with two common site-effect mitigation methods, i.e., generalized linear model (GLM) and Combining Batches (ComBat) Harmonization. For SWD, after FC was calculated and Fisher z-transformed, the site-wise FC mean was removed from each subject before group-level statistical analysis. The above methods were tested on two multi-site psychiatric consortiums [Autism Brain Imaging Data Exchange (ABIDE) and Bipolar and Schizophrenia Network on Intermediate Phenotypes (B-SNIP)]. Preservation of consistent FC alterations in patients were evaluated for each method through the effect sizes (Hedge’s g) of patients vs. controls.Results: For the B-SNIP dataset, SWD improved the effect size between schizophrenic and control subjects by 4.5–7.9%, while GLM and ComBat decreased the effect size by 22.5–42.6%. For the ABIDE dataset, SWD improved the effect size between autistic and control subjects by 2.9–5.3%, while GLM and ComBat decreased the effect size by up to 11.4%.Conclusion: Compared to the original data and commonly used methods, the SWD method demonstrated superior performance in preserving the effect size in FC features associated with disorders.


2019 ◽  
Vol 12 (2) ◽  
pp. 44-58
Author(s):  
Agung Tri Safari

Submission of Customs Declaration including matters regulated in the Customs Law. Furthermore, this matter is further elaborated based on the Minister of Finance Regulation. Customs Declaration can be submitted in writing on the form or in the form of Electronic Data. For those in the form of Electronic Data, it is delivered by submitting Electronic Data storage media in the form of diskettes or etc  to the Customs Office or through an Electronic Data exchange system. DJBC has issued a policy related to the full implementation (Mandatory) of the submission of customs declaration documents through the PDE system based on KEP-415 / BC / 2016 and began to be implemented effectively on January 1, 2019. The purpose of this study is to evaluate whether this policy can be applied in all regions of Indonesia This research is descriptive with a qualitative approach. Based on secondary data, not all regions of Indonesia are affordable to the internet network. The constraints on the availability of infrastructure are a necessity that must be anticipated. The results of this discussion can be input into the improvement of related policies.


Sign in / Sign up

Export Citation Format

Share Document