scholarly journals Hippocampal cells integrate past memory and present perception for the future

PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000876
Author(s):  
Cen Yang ◽  
Yuji Naya

The ability to use stored information in a highly flexible manner is a defining feature of the declarative memory system. However, the neuronal mechanisms underlying this flexibility are poorly understood. To address this question, we recorded single-unit activity from the hippocampus of 2 nonhuman primates performing a newly devised task requiring the monkeys to retrieve long-term item-location association memory and then use it flexibly in different circumstances. We found that hippocampal neurons signaled both mnemonic information representing the retrieved location and perceptual information representing the external circumstance. The 2 signals were combined at a single-neuron level to construct goal-directed information by 3 sequentially occurring neuronal operations (e.g., convergence, transference, and targeting) in the hippocampus. Thus, flexible use of knowledge may be supported by the hippocampal constructive process linking memory and perception, which may fit the mnemonic information into the current situation to present manageable information for a subsequent action.

Author(s):  
Cen Yang ◽  
Yuji Naya

AbstractThe ability to use stored information in a highly flexible manner is a defining feature of the declarative memory system. However, the neuronal mechanisms underlying this flexibility are poorly understood. To address this question, we recorded single-unit activity from the hippocampus of two non-human primates performing a newly devised task requiring the monkeys to retrieve long-term item-location association memory and then use it flexibly in different circumstances. We found that hippocampal neurons signaled both mnemonic information representing the retrieved location and perceptual information representing the external circumstance. The two signals were combined at a single-neuron level to construct goal-directed information by three sequentially occurring neuronal operations (e.g., convergence, transference, targeting) in the hippocampus. Thus, flexible use of knowledge may be supported by the hippocampal constructive process linking memory and perception, which may fit the mnemonic information into the current situation to present manageable information for a subsequent action.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Author(s):  
John J Shaw ◽  
Zhisen Urgolites ◽  
Padraic Monaghan

Visual long-term memory has a large and detailed storage capacity for individual scenes, objects, and actions. However, memory for combinations of actions and scenes is poorer, suggesting difficulty in binding this information together. Sleep can enhance declarative memory of information, but whether sleep can also boost memory for binding information and whether the effect is general across different types of information is not yet known. Experiments 1 to 3 tested effects of sleep on binding actions and scenes, and Experiments 4 and 5 tested binding of objects and scenes. Participants viewed composites and were tested 12-hours later after a delay consisting of sleep (9pm-9am) or wake (9am-9pm), on an alternative forced choice recognition task. For action-scene composites, memory was relatively poor with no significant effect of sleep. For object-scene composites sleep did improve memory. Sleep can promote binding in memory, depending on the type of information to be combined.


2020 ◽  
Author(s):  
Yuheng Jiang ◽  
Antonius M.J. VanDongen

ABSTRACTNew tools in optogenetics and molecular biology have culminated in recent studies which mark immediate-early gene (IEG)-expressing neurons as memory traces or engrams. Although the activity-dependent expression of IEGs has been successfully utilised to label memory traces, their roles in engram specification is incompletely understood. Outstanding questions remain as to whether expression of IEGs can interplay with network properties such as functional connectivity and also if neurons expressing different IEGs are functionally distinct. We investigated the expression of Arc and c-Fos, two commonly utilised IEGs in memory engram specification, in cultured hippocampal neurons. After pharmacological induction of long-term potentiation (LTP) in the network, we noted an emergent network property of refinement in functional connectivity between neurons, characterized by a global down-regulation of network connectivity, together with strengthening of specific connections. Subsequently, we show that Arc expression correlates with the effects of network refinement, with Arc-positive neurons being selectively strengthened. Arc positive neurons were also found to be located in closer physical proximity to each other in the network. While the expression pattern of IEGs c-Fos and Arc strongly overlaps, Arc was more selectively expressed than c-Fos. These IEGs also act together in coding information about connection strength pruning. These results demonstrate important links between IEG expression and network connectivity, which serve to bridge the gap between cellular correlates and network effects in learning and memory.


2021 ◽  
Author(s):  
Robin Klimek ◽  
Paul Donlin-Asp ◽  
Claudio Polisseni ◽  
Vanessa Hanff ◽  
Erin Schuman ◽  
...  

Herein, we present a new class of Q-dye molecular beacons (MBs) that can be locally activated with visible light in hippocampal neurons. Our novel architecture increases the available monitoring time...


2019 ◽  
Vol 122 (3) ◽  
pp. 1123-1135 ◽  
Author(s):  
C. J. Scavuzzo ◽  
M. J. LeBlancq ◽  
F. Nargang ◽  
H. Lemieux ◽  
T. J. Hamilton ◽  
...  

The nearly axiomatic idea that de novo protein synthesis is necessary for long-term memory consolidation is based heavily on behavioral studies using translational inhibitors such as anisomycin. Although inhibiting protein synthesis has been shown to disrupt the expression of memory, translational inhibitors also have been found to profoundly disrupt basic neurobiological functions, including the suppression of ongoing neural activity in vivo. In the present study, using transverse hippocampal brain slices, we monitored the passive and active membrane properties of hippocampal CA1 pyramidal neurons using intracellular whole cell recordings during a brief ~30-min exposure to fast-bath-perfused anisomycin. Anisomycin suppressed protein synthesis to 46% of control levels as measured using incorporation of radiolabeled amino acids and autoradiography. During its application, anisomycin caused a significant depolarization of the membrane potential, without any changes in apparent input resistance or membrane time constant. Anisomycin-treated neurons also showed significant decreases in firing frequencies and spike amplitudes, and showed increases in spike width across spike trains, without changes in spike threshold. Because these changes indicated a loss of cellular energetics contributing to maintenance of ionic gradients across the membrane, we confirmed that anisomycin impaired mitochondrial function by reduced staining with 2,3,5-triphenyltetrazolium chloride and also impaired cytochrome c oxidase (complex IV) activity as indicated through high-resolution respirometry. These findings emphasize that anisomycin-induced alterations in neural activity and metabolism are a likely consequence of cell-wide translational inhibition. Critical reevaluation of studies using translational inhibitors to promote the protein synthesis dependent idea of long-term memory is absolutely necessary. NEW & NOTEWORTHY Memory consolidation is thought to be dependent on the synthesis of new proteins because translational inhibitors produce amnesia when administered just after learning. However, these agents also disrupt basic neurobiological functions. We show that blocking protein synthesis disrupts basic membrane properties of hippocampal neurons that correspond to induced disruptions of mitochondrial function. It is likely that translational inhibitors cause amnesia through their disruption of neural activity as a result of dysfunction of intracellular energetics.


Sign in / Sign up

Export Citation Format

Share Document