An oxytocin/vasopressin-related neuropeptide modulates social foraging behavior in the clonal raider ant
Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies.