scholarly journals A genetic screen in Drosophila reveals an unexpected role for the KIP1 ubiquitination-promoting complex in male fertility

PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009217
Author(s):  
Weizhe Li ◽  
Jinqing Liang ◽  
Patricia Outeda ◽  
Stacey Turner ◽  
Barbara T. Wakimoto ◽  
...  

A unifying feature of polycystin-2 channels is their localization to both primary and motile cilia/flagella. In Drosophila melanogaster, the fly polycystin-2 homologue, Amo, is an ER protein early in sperm development but the protein must ultimately cluster at the flagellar tip in mature sperm to be fully functional. Male flies lacking appropriate Amo localization are sterile due to abnormal sperm motility and failure of sperm storage. We performed a forward genetic screen to identify additional proteins that mediate ciliary trafficking of Amo. Here we report that Drosophila homologues of KPC1 and KPC2, which comprise the mammalian KIP1 ubiquitination-promoting complex (KPC), form a conserved unit that is required for the sperm tail tip localization of Amo. Male flies lacking either KPC1 or KPC2 phenocopy amo mutants and are sterile due to a failure of sperm storage. KPC is a heterodimer composed of KPC1, an E3 ligase, and KPC2 (or UBAC1), an adaptor protein. Like their mammalian counterparts Drosophila KPC1 and KPC2 physically interact and they stabilize one another at the protein level. In flies, KPC2 is monoubiquitinated and phosphorylated and this modified form of the protein is located in mature sperm. Neither KPC1 nor KPC2 directly interact with Amo but they are detected in proximity to Amo at the tip of the sperm flagellum. In summary we have identified a new complex that is involved in male fertility in Drosophila melanogaster.

Author(s):  
Olivia Gevedon ◽  
Harris Bolus ◽  
Shu Hui Lye ◽  
Keaton Schmitz ◽  
Jesualdo Fuentes-González ◽  
...  

2006 ◽  
Vol 5 (3) ◽  
pp. 222-239 ◽  
Author(s):  
J. D. Armstrong ◽  
M. J. Texada ◽  
R. Munjaal ◽  
D. A. Baker ◽  
K. M. Beckingham

Genetics ◽  
2006 ◽  
Vol 172 (4) ◽  
pp. 2325-2335 ◽  
Author(s):  
Paul Mark B. Medina ◽  
Lance L. Swick ◽  
Ryan Andersen ◽  
Zachary Blalock ◽  
Jay E. Brenman

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 289
Author(s):  
Gurman Grewal ◽  
Bahar Patlar ◽  
Alberto Civetta

In Drosophila, male reproductive fitness can be affected by any number of processes, ranging from development of gametes, transfer to and storage of mature sperm within the female sperm storage organs, and utilization of sperm for fertilization. We have previously identified the 89B cytogenetic map position of D. melanogaster as a hub for genes that effect male paternity success when disturbed. Here, we used RNA interference to test 11 genes that are highly expressed in the testes and located within the 89B region for their role in sperm competition and male fecundity when their expression is perturbed. Testes-specific knockdown (KD) of bor and CSN5 resulted in complete sterility, whereas KD of CG31287, Manf and Mst89B, showed a breakdown in sperm competitive success when second to mate (P2 < 0.5) and reduced fecundity in single matings. The low fecundity of Manf KD is explained by a significant reduction in the amount of mature sperm produced. KD of Mst89B and CG31287 does not affect sperm production, sperm transfer into the female bursa or storage within 30 min after mating. Instead, a significant reduction of sperm in female storage is observed 24 h after mating. Egg hatchability 24 h after mating is also drastically reduced for females mated to Mst89B or CG31287 KD males, and this reduction parallels the decrease in fecundity. We show that normal germ-line expression of Mst89B and CG31287 is needed for effective sperm usage and egg fertilization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathan J. VanDusen ◽  
Julianna Y. Lee ◽  
Weiliang Gu ◽  
Catalina E. Butler ◽  
Isha Sethi ◽  
...  

AbstractThe forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


Genetics ◽  
1973 ◽  
Vol 74 (4) ◽  
pp. 619-631
Author(s):  
D L Hartl

ABSTRACT The recovery of the SD chromosome from a heterozygous SD male increases with brood. This is independent of the age of the female, occurs during the time the sperm are stored in the females, disappears when the segregation distortion is suppressed, and is temperature-sensitive-temperature shocks above or below 25°C applied to the mature sperm both tend to accelerate the increase in the recovery of SD. All this suggests the existence of a class of sperm affected by SD in which the sperm are able to fertilize eggs for a short time following ejaculation but become dysfunctional thereafter.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Xiaochun Chi ◽  
Weiwei Luo ◽  
Jiagui Song ◽  
Bing Li ◽  
Tiantian Su ◽  
...  

AbstractKindlin-2 is known to play important roles in the development of mesoderm-derived tissues including myocardium, smooth muscle, cartilage and blood vessels. However, nothing is known for the role of Kindlin-2 in mesoderm-derived reproductive organs. Here, we report that loss of Kindlin-2 in Sertoli cells caused severe testis hypoplasia, abnormal germ cell development and complete infertility in male mice. Functionally, loss of Kindlin-2 inhibits proliferation, increases apoptosis, impairs phagocytosis in Sertoli cells and destroyed the integration of blood-testis barrier structure in testes. Mechanistically, Kindlin-2 interacts with LATS1 and YAP, the key components of Hippo pathway. Kindlin-2 impedes LATS1 interaction with YAP, and depletion of Kindlin-2 enhances LATS1 interaction with YAP, increases YAP phosphorylation and decreases its nuclear translocation. For clinical relevance, lower Kindlin-2 expression and decreased nucleus localization of YAP was found in SCOS patients. Collectively, we demonstrated that Kindlin-2 in Sertoli cells is essential for sperm development and male reproduction.


2004 ◽  
Vol 24 (2) ◽  
pp. 796-808 ◽  
Author(s):  
Lindsay K. MacDougall ◽  
Mary Elizabeth Gagou ◽  
Sally J. Leevers ◽  
Ernst Hafen ◽  
Michael D. Waterfield

ABSTRACT Phosphoinositide 3-kinases (PI3Ks) can be divided into three distinct classes (I, II, and III) on the basis of their domain structures and the lipid signals that they generate. Functions have been assigned to the class I and class III enzymes but have not been established for the class II PI3Ks. We have obtained the first evidence for a biological function for a class II PI3K by expressing this enzyme during Drosophila melanogaster development and by using deficiencies that remove the endogenous gene. Wild-type and catalytically inactive PI3K_68D transgenes have opposite effects on the number of sensory bristles and on wing venation phenotypes induced by modified epidermal growth factor (EGF) receptor signaling. These results indicate that the endogenous PI3K_68D may act antagonistically to the EGF receptor-stimulated Ras-mitogen-activated protein kinase pathway and downstream of, or parallel to, the Notch receptor. A class II polyproline motif in PI3K_68D can bind the Drk adaptor protein in vitro, primarily via the N-terminal SH3 domain of Drk. Drk may thus be important for the localization of PI3K_68D, allowing it to modify signaling pathways downstream of cell surface receptors. The phenotypes obtained are markedly distinct from those generated by expression of the Drosophila class I PI3K, which affects growth but not pattern formation.


Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1497-1511 ◽  
Author(s):  
Brian Florence ◽  
William McGinnis

Abstract We have screened the Drosophila X chromosome for genes whose dosage affects the function of the homeotic gene Deformed. One of these genes, extradenticle, encodes a homeodomain transcription factor that heterodimerizes with Deformed and other homeotic Hox proteins. Mutations in the nejire gene, which encodes a transcriptional adaptor protein belonging to the CBP/p300 family, also interact with Deformed. The other previously characterized gene identified as a Deformed interactor is Notch, which encodes a transmembrane receptor. These three genes underscore the importance of transcriptional regulation and cell-cell signaling in Hox function. Four novel genes were also identified in the screen. One of these, rancor, is required for appropriate embryonic expression of Deformed and another homeotic gene, labial. Both Notch and nejire affect the function of another Hox gene, Ultrabithorax, indicating they may be required for homeotic activity in general.


Sign in / Sign up

Export Citation Format

Share Document