scholarly journals MAIT cells are activated in acute Dengue virus infection and after in vitro Zika virus infection

2018 ◽  
Vol 12 (1) ◽  
pp. e0006154 ◽  
Author(s):  
Dominic Paquin-Proulx ◽  
Vivian I. Avelino-Silva ◽  
Bianca A. N. Santos ◽  
Nathália Silveira Barsotti ◽  
Fabiana Siroma ◽  
...  
2017 ◽  
Vol 65 (11) ◽  
pp. 1829-1836 ◽  
Author(s):  
Wen-Yang Tsai ◽  
Han Ha Youn ◽  
Carlos Brites ◽  
Jih-Jin Tsai ◽  
Jasmine Tyson ◽  
...  

2018 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Kyra Hermanns ◽  
Claudia Göhner ◽  
Anne Kopp ◽  
Andre Schmidt ◽  
Waltraut M. Merz ◽  
...  

2018 ◽  
Vol 5 (7) ◽  
Author(s):  
William G Valiant ◽  
Tahaniyat Lalani ◽  
Heather C Yun ◽  
Anjali Kunz ◽  
Timothy H Burgess ◽  
...  

Abstract Zika virus infection in a dengue virus–naïve subject was associated with the induction of high levels of cross-reactive binding antibodies. These responses were, however, largely non-neutralizing and displayed a capacity to enhance dengue infection in vitro at significantly low dilution (1:10). In contrast, a subject who had high levels of neutralizing antibodies against both dengue and Zika viruses enhanced infection at a dilution of 1:10 000. These results suggest that high levels of dengue cross-neutralizing antibodies could potentially prevent the enhancement of dengue infection in Zika virus–convalescent individuals.


Author(s):  
Morganna C. Lima ◽  
Elisa A. N. Azevedo ◽  
Clarice N. L. de Morais ◽  
Larissa I. O. de Sousa ◽  
Bruno M. Carvalho ◽  
...  

Background: Zika virus is an emerging arbovirus of global importance. ZIKV infection is associated with a range of neurological complications such as the Congenital Zika Syndrome and Guillain Barré Syndrome. Despite the magnitude of recent outbreaks, there is no specific therapy to prevent or to alleviate disease pathology. Objective: To investigate the role of P-MAPA immunomodulator in Zika-infected THP-1 cells. Methods: THP-1 cells were subjected at Zika virus infection (Multiplicity of Infection = 0.5) followed by treatment with P-MAPA for until 96 hours post-infection. After that, the cell death was analyzed by annexin+/ PI+ and caspase 3/ 7+ staining by flow cytometry. In addition, the virus replication and cell proliferation were accessed by RT-qPCR and Ki67 staining, respectively. Results: We demonstrate that P-MAPA in vitro treatment significantly reduces Zika virus-induced cell death and caspase-3/7 activation on THP-1 infected cells, albeit it has no role in virus replication and cell proliferation. Conclusions: Our study reveals that P-MAPA seems to be a satisfactory alternative to inhibits the effects of Zika virus infection in mammalian cells.


2020 ◽  
Vol 6 (10) ◽  
pp. 2616-2628 ◽  
Author(s):  
Zhong Li ◽  
Jimin Xu ◽  
Yuekun Lang ◽  
Xiaoyu Fan ◽  
Lili Kuo ◽  
...  

2016 ◽  
Vol 90 (24) ◽  
pp. 11122-11131 ◽  
Author(s):  
Meihui Xu ◽  
Roland Züst ◽  
Ying Xiu Toh ◽  
Jennifer M. Pfaff ◽  
Kristen M. Kahle ◽  
...  

ABSTRACT Half of the world's population is exposed to the risk of dengue virus infection. Although a vaccine for dengue virus is now available in a few countries, its reported overall efficacy of about 60% is not ideal. Protective immune correlates following natural dengue virus infection remain undefined, which makes it difficult to predict the efficacy of new vaccines. In this study, we address the protective capacity of dengue virus-specific antibodies that are produced by plasmablasts a few days after natural secondary infection. Among a panel of 18 dengue virus-reactive human monoclonal antibodies, four groups of antibodies were identified based on their binding properties. While antibodies targeting the fusion loop of the glycoprotein of dengue virus dominated the antibody response, two smaller groups of antibodies bound to previously undescribed epitopes in domain II of the E protein. The latter, largely serotype-cross-reactive antibodies, demonstrated increased stability of binding at pH 5. These antibodies possessed weak to moderate neutralization capacity in vitro but were the most efficacious in promoting the survival of infected mice. Our data suggest that the cross-reactive anamnestic antibody response has a protective capacity despite moderate neutralization in vitro and a moderate decrease of viremia in vivo . IMPORTANCE Antibodies can protect from symptomatic dengue virus infection. However, it is not easy to assess which classes of antibodies provide protection because in vitro assays are not always predictive of in vivo protection. During a repeat infection, dengue virus-specific immune memory cells are reactivated and large amounts of antibodies are produced. By studying antibodies cloned from patients with heterologous secondary infection, we tested the protective value of the serotype-cross-reactive “recall” or “anamnestic” response. We found that results from in vitro neutralization assays did not always correlate with the ability of the antibodies to reduce viremia in a mouse model. In addition, a decrease of viremia in mice did not necessarily improve survival. The most protective antibodies were stable at pH 5, suggesting that antibody binding in the endosomes, after the antibody-virus complex is internalized, might be important to block virus spread in the organism.


Sign in / Sign up

Export Citation Format

Share Document