scholarly journals Revisiting density-dependent fecundity in schistosomes using sibship reconstruction

2021 ◽  
Vol 15 (5) ◽  
pp. e0009396
Author(s):  
M. Inês Neves ◽  
Charlotte M. Gower ◽  
Joanne P. Webster ◽  
Martin Walker

The stability of parasite populations is regulated by density-dependent processes occurring at different stages of their life cycle. In dioecious helminth infections, density-dependent fecundity is one such regulatory process that describes the reduction in egg production by female worms in high worm burden within-host environments. In human schistosomiasis, the operation of density-dependent fecundity is equivocal and investigation is hampered by the inaccessibility of adult worms that are located intravascularly. Current understanding is almost exclusively limited to data collected from two human autopsy studies conducted over 40 years ago, with subsequent analyses having reached conflicting conclusions. Whether egg production is regulated in a density-dependent manner is key to predicting the effectiveness of interventions targeting the elimination of schistosomiasis and to the interpretation of parasitological data collected during monitoring and evaluation activities. Here, we revisit density-dependent fecundity in the two most globally important human Schistosoma spp. using a statistical modelling approach that combines molecular inference on the number of parents/adult worms in individual human hosts with parasitological egg count data from mainland Tanzania and Zanzibar. We find a non-proportional relationship between S. haematobium egg counts and inferred numbers of female worms, providing the first clear evidence of density-dependent fecundity in this schistosome species. We do not find robust evidence for density-dependent fecundity in S. mansoni because of high sensitivity to some modelling assumptions and the lower statistical power of the available data. We discuss the strengths and limitations of our model-based analytical approach and its potential for improving our understanding of density dependence in schistosomiasis and other human helminthiases earmarked for elimination.

Parasitology ◽  
1987 ◽  
Vol 95 (2) ◽  
pp. 373-388 ◽  
Author(s):  
G. Smith ◽  
B. T. Grenfell ◽  
R. M. Anderson

SUMMARYThe decline in faecal egg counts, characteristic of calves which have been experimentally infected withOstertagia ostertagi, is analysed using a mathematical model in which parasite fecundity is assumed to be an inverse function of both the duration and intensity of infection. The model incorporates a description of the frequency distribution of mature parasites between hosts (which is less over-dispersed than is usual for many other helminth infections). The model provides a good overall description of the decline in faecal egg production observed during trickle and single infection experiments. The main discrepancy between a comparison of the model predictions and the results of the most detailed available series of trickle infection experiments occurs at the initial peak of egg production. The magnitude of this difference appears to be related to the worm burden at the peak of egg production. The possible mechanisms underlying density-dependent regulation of the fecundity ofO. ostertagiaare discussed.


Parasitology ◽  
1990 ◽  
Vol 100 (3) ◽  
pp. 469-478 ◽  
Author(s):  
R. A. Rose ◽  
J. M. Behnke

SUMMARYNeonatal hamsters were exposed to varying doses of Necator americanus larvae and changes in the stability of the resulting worm burdens were monitored over a period of 25 weeks. No change in worm burdens was evident for the first 5 weeks of infection, irrespective of the infection intensity, but the more heavily infected groups subsequently lost worms in a density-dependent manner. Male and female hamsters lost comparable proportions of their established parasite burdens indicating that there was no host sex-linked difference in this respect. By week 15 infections had stabilized and the residual worm burdens, usually a maximum of 30 worms survived for a considerably longer period of time. Initially the percentage of male worms varied from 45% to 50% but as infection progressed male worms comprised a significantly increasing proportion of the total worm burden. By week 25 the percentage of male worms was usually in excess of 60%. The growth of infected animals was not severely affected by N. americanus, even when heavy worm burdens established initially, but a significant effect was detected particularly in week 5, prior to worm loss, when the adult worms would have been feeding on intestinal tissues and causing blood loss for a period of about 2 weeks. The most severe depression in the packed cell volume was also recorded in week 5, indicating that anaemia had been initiated in infected hamsters. Whilst, the regulation of parasite burdens in weeks 5–10 post-infection may have resulted from host immunity, the persistence of the residual worm burdens, the marked density-dependent anaemia and the subtle effect on host weight, all reflected well-documented aspects of chronic human necatoriasis.


Parasitology ◽  
1982 ◽  
Vol 84 (3) ◽  
pp. 573-587 ◽  
Author(s):  
Anne Keymer

The regulation of helminth populations tends to occur primarily as a result of limitations imposed on the build up of parasite subpopulations within individual hosts (Anderson & May, 1979; May & Anderson, 1979). Considering the relevance of these factors to the success or otherwise of intestinal helminth control programmes, it is perhaps surprising that more information is not yet available concerning the particular mechanisms which may be responsible, and in particular, the population consequences of the immune responses which such parasites may precipitate. Density-dependence in a single rate parameter, if operative over the naturally observed numerical range, is sufficient to regulate parasite population flow throughout the life-cycle, whether direct or indirect (Anderson, 1976). For the genera given in Table 1, this could be provided by the observed pattern of parasite mortality and/or fecundity. It is of interest to note, however, that circumstantial evidence cited in the Table suggests that each of the 6 genera is also potentially able to induce host mortality under certain conditions. Whether this acts in a density-dependent manner in natural infections is almost entirely unknown. Rapid reproduction may be of great selective advantage to intestinal helminths, even if it is necessarily accompanied by pathogenicity (see Anderson, 1981). If the manner in which this pathogenicity acts in any way enhances the stability of the host-parasite interaction, then perhaps it may have contributed to the selection pressures which have led so many genera to continue to break the rules of the ‘well-adapted’ parasite (see, for example, Noble & Noble, 1971).


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 708
Author(s):  
Żaneta Binert-Kusztal ◽  
Małgorzata Starek ◽  
Joanna Żandarek ◽  
Monika Dąbrowska

Currently, there is still a need for broad-spectrum antibiotics. The new cephalosporin antibiotics include, among others, ceftobiprole, a fifth-generation gram-positive cephalosporin, active against Staphylococcus aureus methicillin agonist (MRSA). The main focus of the work was to optimize the conditions of ceftobiprole qualitative determination and to validate the developed procedure according to ICH guidelines. As a result of the optimization process, HPTLC Cellulose chromatographic plates as a stationary phase and a mixture consisting of ethanol:2-propanol: glacial acetic acid: water (4:4:1:3, v/v/v/v) as a mobile phase were chosen. The densitometric detection was carried out at maximum absorbance of ceftobiprole (λ = 232 nm). Next, the validation process of the developed procedure was carried out. The relative standard deviation (RSD) for precision was less than 1.65%, which proves the high compatibility of the results, as well as the LOD = 0.0257 µg/spot and LOQ = 0.0779 µg/spot values, which also confirm the high sensitivity of the procedure. The usefulness of the developed method for the stability studies of ceftobiprole was analyzed. Study was carried out under stress conditions, i.e., acid and alkaline environments, exposure to radiation imitating sunlight and high temperature (40–60 °C). It was found that cefotbiprole is unstable in an alkaline environment and during exposure to UV-VIS radiation. Moreover, the lipophilicity parameter, as a main physicochemical property of the biologically active compound, was determined using experimental and computational methods.


2007 ◽  
Vol 282 (46) ◽  
pp. 33868-33878 ◽  
Author(s):  
Marcus Semtner ◽  
Michael Schaefer ◽  
Olaf Pinkenburg ◽  
Tim D. Plant

Mammalian members of the classical transient receptor potential channel subfamily (TRPC) are Ca2+-permeable cation channels involved in receptor-mediated increases in intracellular Ca2+. TRPC4 and TRPC5 form a group within the TRPC subfamily and are activated in a phospholipase C-dependent manner by an unidentified messenger. Unlike most other Ca2+-permeable channels, TRPC4 and -5 are potentiated by micromolar concentrations of La3+ and Gd3+. This effect results from an action of the cations at two glutamate residues accessible from the extracellular solution. Here, we show that TRPC4 and -5 respond to changes in extracellular pH. Lowering the pH increased both G protein-activated and spontaneous TRPC5 currents. Both effects were already observed with small reductions in pH (from 7.4 to 7.0) and increased up to pH 6.5. TRPC4 was also potentiated by decreases in pH, whereas TRPC6 was only inhibited, with a pIC50 of 5.7. Mutation of the glutamate residues responsible for lanthanoid sensitivity of TRPC5 (E543Q and E595Q) modified the potentiation of TRPC5 by acid. Further evidence for a similarity in the actions of lanthanoids and H+ on TRPC5 is the reduction in single channel conductance and dramatic increase in channel open probability in the presence of either H+ or Gd3+ that leads to larger integral currents. In conclusion, the high sensitivity of TRPC5 to H+ indicates that, in addition to regulation by phospholipase C and other factors, the channel may act as a sensor of pH that links decreases in extracellular pH to Ca2+ entry and depolarization.


1990 ◽  
Vol 10 (6) ◽  
pp. 3277-3279 ◽  
Author(s):  
G Tjaden ◽  
A Aguanno ◽  
R Kumar ◽  
D Benincasa ◽  
R M Gubits ◽  
...  

Nerve growth factor (NGF) affects levels of the alpha subunit of the stimulatory G protein (Gs-alpha) in pheochromocytoma 12 cells in a bidirectional, density-dependent manner. Cells grown at high density responded to NGF treatment with increased levels of Gs-alpha mRNA and protein. Conversely, in cells grown in low-density cultures, levels of this mRNA were lowered by NGF treatment.


2014 ◽  
Vol 745 ◽  
pp. 647-681 ◽  
Author(s):  
Yee Chee See ◽  
Matthias Ihme

AbstractLocal linear stability analysis has been shown to provide valuable information about the response of jet diffusion flames to flow-field perturbations. However, this analysis commonly relies on several modelling assumptions about the mean flow prescription, the thermo-viscous-diffusive transport properties, and the complexity and representation of the chemical reaction mechanisms. In this work, the effects of these modelling assumptions on the stability behaviour of a jet diffusion flame are systematically investigated. A flamelet formulation is combined with linear stability theory to fully account for the effects of complex transport properties and the detailed reaction chemistry on the perturbation dynamics. The model is applied to a methane–air jet diffusion flame that was experimentally investigated by Füriet al.(Proc. Combust. Inst., vol. 29, 2002, pp. 1653–1661). Detailed simulations are performed to obtain mean flow quantities, about which the stability analysis is performed. Simulation results show that the growth rate of the inviscid instability mode is insensitive to the representation of the transport properties at low frequencies, and exhibits a stronger dependence on the mean flow representation. The effects of the complexity of the reaction chemistry on the stability behaviour are investigated in the context of an adiabatic jet flame configuration. Comparisons with a detailed chemical-kinetics model show that the use of a one-step chemistry representation in combination with a simplified viscous-diffusive transport model can affect the mean flow representation and heat release location, thereby modifying the instability behaviour. This is attributed to the shift in the flame structure predicted by the one-step chemistry model, and is further exacerbated by the representation of the transport properties. A pinch-point analysis is performed to investigate the stability behaviour; it is shown that the shear-layer instability is convectively unstable, while the outer buoyancy-driven instability mode transitions from absolutely to convectively unstable in the nozzle near field, and this transition point is dependent on the Froude number.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Kwabena Sarpong ◽  
Bhaskar Datta

The binding affinity and specificity of nucleic acid aptamers have made them valuable candidates for use as sensors in diagnostic applications. In particular, chromophore-functionalized aptamers offer a relatively simple format for detection and quantification of target molecules. We describe the use of nucleic-acid-staining reagents as an effective tool for detecting and signaling aptamer-target interactions. Aptamers varying in size and structure and targeting a range of molecules have been used in conjunction with commercially available chromophores to indicate and quantify the presence of cognate targets with high sensitivity and selectivity. Our assay precludes the covalent modification of nucleic acids and relies on the differential fluorescence signal of chromophores when complexed with aptamers with or without their cognate target. We also evaluate factors that are critical for the stability of the complex between the aptamer and chromophore in presence or absence of target molecules. Our results indicate the possibility of controlling those factors to enhance the sensitivity of target detection by the aptamers used in such assays.


2013 ◽  
Vol 823 ◽  
pp. 291-295 ◽  
Author(s):  
Shou Chen Chai ◽  
Peng Yang ◽  
Cheng Jia Yang ◽  
Chun Li Cai ◽  
Na Yu

In the space restricted airtight environment that people lives in, detecting harmful gas by miniature gas chromatography is the practical requirement at present, however, PIDs performance is key factor that restrict the application of miniature gas chromatography, the redesign of the detectors gas route in this paper aiming at improve detectors stability observably, and schemed out miniature PID with high sensitivity, low detection limit and fast response. The result of the experiment shows that the detection limit is 0.04ppm, the sensitivity is 101mv/ppm,the stability is 0.04×10-6/24h,meeting the project requirement. Keywords: photoionization detector; ionization chamber; sensitivity; detection limit;


Sign in / Sign up

Export Citation Format

Share Document