scholarly journals A Genome-Wide Analysis of the LBD (LATERAL ORGAN BOUNDARIES Domain) Gene Family in Malus domestica with a Functional Characterization of MdLBD11

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57044 ◽  
Author(s):  
Xiaofei Wang ◽  
Shizhong Zhang ◽  
Ling Su ◽  
Xin Liu ◽  
Yujin Hao
Author(s):  
Zhongwei Zou ◽  
Fei Liu ◽  
Shuanglong Huang ◽  
DILANTHA GERARD FERNANDO

Proteins containing Valine-glutamine (VQ) motifs play important roles in plant growth and development, as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus L.) worldwide. H; however, the identification of B. napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome genome-wide identification and characterization of the VQ gene family in B. napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand B. napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase4 substrate1 (MKS1) gene) in a blackleg-susceptible canola variety Westar. Overexpression The overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage. H; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the SA salicylic acid (SA)- and jasmonic acid (JA )-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in the defense against L. maculans.


Plant Science ◽  
2015 ◽  
Vol 237 ◽  
pp. 33-45 ◽  
Author(s):  
Lianzhe Wang ◽  
Wei Hu ◽  
Jiutong Sun ◽  
Xiaoyu Liang ◽  
Xiaoyue Yang ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Songlin Zhang ◽  
Li Wang ◽  
Xiaomeng Sun ◽  
Yunduan Li ◽  
Jin Yao ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1061
Author(s):  
Xing Huang ◽  
Xuehui Bai ◽  
Tieying Guo ◽  
Zhouli Xie ◽  
Margit Laimer ◽  
...  

Coffee is one of the most popular beverages around the world, which is mainly produced from the allopolyploid Coffea arabica. The genomes of C. arabica and its two ancestors C. canephora and C. eugenioides have been released due to the development of next generation sequencing. However, few studies on C. arabica are related to the PIN-FORMED (PIN) auxin efflux transporter despite its importance in auxin-mediated plant growth and development. In the present study, we conducted a genome-wide analysis of the PIN gene family in the three coffee species. Totals of 17, 9 and 10 of the PIN members were characterized in C. Arabica, C. canephora and C. eugenioides, respectively. Phylogenetic analysis revealed gene loss of PIN1 and PIN2 homologs in C. arabica, as well as gene duplication of PIN5 homologs during the fractionation process after tetraploidy. Furthermore, we conducted expression analysis of PIN genes in C. arabica by in silico and qRT-PCR. The results revealed the existence of gene expression dominance in allopolyploid coffee and illustrated several PIN candidates in regulating auxin transport and homeostasis under leaf rust fungus inoculation and the tissue-specific expression pattern of C. arabica. Together, this study provides the basis and guideline for future functional characterization of the PIN gene family.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1973
Author(s):  
Qingbo Zheng ◽  
Shenghui Su ◽  
Zhe Wang ◽  
Yongzhang Wang ◽  
Xiaozhao Xu

γ-Aminobutyric Acid (GABA), a four-carbon non-protein amino acid, is a significant component of the free amino acid pool in most prokaryotic and eukaryotic organisms. GABA is involved in pH regulation, maintaining C/N balance, plant development and defence, as well as a compatible osmolyte and an alternative pathway for glutamate utilization via anion flux. Glutamate decarboxylase (GAD, EC 4.1.1.15) and GABA transaminase (GABA-T, EC 2.6.1.19) are two key enzymes involved in the synthesis and metabolism of GABA. Recently, GABA transporters (GATs), protein and aluminium-activated malate transporter (ALMT) proteins which function as GABA receptors, have been shown to be involved in GABA regulation. However, there is no report on the characterization of apple GABA pathway genes. In this study, we performed a genome-wide analysis and expression profiling of the GABA pathway gene family in the apple genome. A total of 24 genes were identified including five GAD genes (namely MdGAD 1–5), two GABA-T genes (namely MdGABA-T 1,2), 10 GAT genes (namely GAT 1–10) and seven ALMT genes (namely MdALMT1–7). These genes were randomly distributed on 12 chromosomes. Phylogenetic analyses grouped GABA shunt genes into three clusters—cluster I, cluster II, and cluster III—which had three, four, and five genes, respectively. The expression profile analysis revealed significant MdGAD4 expression levels in both fruit and flower organs, except pollen. However, there were no significant differences in the expression of other GABA shunt genes in different tissues. This work provides the first characterization of the GABA shunt gene family in apple and suggests their importance in apple response to abiotic stress. These results can serve as a guide for future studies on the understanding and functional characterization of these gene families.


Sign in / Sign up

Export Citation Format

Share Document