scholarly journals DNA Methylation of Alternative Promoters Directs Tissue Specific Expression of Epac2 Isoforms

PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e67925 ◽  
Author(s):  
Erling A. Hoivik ◽  
Solveig L. Witsoe ◽  
Inger R. Bergheim ◽  
Yunjian Xu ◽  
Ida Jakobsson ◽  
...  
2002 ◽  
Vol 64 (2) ◽  
pp. 514-524 ◽  
Author(s):  
Chiho Sumi-Ichinose ◽  
Seiko Hasegawa ◽  
Hiroshi Ichinose ◽  
Hirohide Sawada ◽  
Kazuto Kobayashi ◽  
...  

2011 ◽  
Vol 23 (5-6) ◽  
pp. 336-345 ◽  
Author(s):  
Koji Hayakawa ◽  
Momo O. Nakanishi ◽  
Jun Ohgane ◽  
Satoshi Tanaka ◽  
Mitsuko Hirosawa ◽  
...  

2009 ◽  
Vol 202 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Elika Missaghian ◽  
Petra Kempná ◽  
Bernhard Dick ◽  
Andrea Hirsch ◽  
Rasoul Alikhani-Koupaei ◽  
...  

The CYP17A1 gene is the qualitative regulator of steroidogenesis. Depending on the presence or absence of CYP17 activities mineralocorticoids, glucocorticoids or adrenal androgens are produced. The expression of the CYP17A1 gene is tissue as well as species-specific. In contrast to humans, adrenals of rodents do not express the CYP17A1 gene and have therefore no P450c17 enzyme for cortisol production, but produce corticosterone. DNA methylation is involved in the tissue-specific silencing of the CYP17A1 gene in human placental JEG-3 cells. We investigated the role of DNA methylation for the tissue-specific expression of the CYP17A1 gene in rodents. Rats treated with the methyltransferase inhibitor 5-aza-deoxycytidine excreted the cortisol metabolite tetrahydrocortisol in their urine suggesting that treatment induced CYP17 expression and 17α-hydroxylase activity through demethylation. Accordingly, bisulfite modification experiments identified a methylated CpG island in the CYP17 promoter in DNA extracted from rat adrenals but not from testes. Both methyltransferase and histone deacetylase inhibitors induced the expression of the CYP17A1 gene in mouse adrenocortical Y1 cells which normally do not express CYP17, indicating that the expression of the mouse CYP17A1 gene is epigenetically controlled. The role of DNA methylation for CYP17 expression was further underlined by the finding that a reporter construct driven by the mouse −1041 bp CYP17 promoter was active in Y1 cells, thus excluding the lack of essential transcription factors for CYP17 expression in these adrenal cells.


2017 ◽  
Author(s):  
Carl Baribault ◽  
Kenneth C. Ehrlich ◽  
V. K. Chaithanya Ponnaluri ◽  
Sriharsa Pradhan ◽  
Michelle Lacey ◽  
...  

AbstractTissue-specific gene transcription can be affected by DNA methylation in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). We studied 95 genes in detail using available epigenetic and transcription databases to detect and elucidate less obvious associations between development-linked hypermethylated DMRs in myoblasts (Mb) and cell-and tissue-specific expression. Many of these genes encode developmental transcription factors and display DNA hypermethylation also in skeletal muscle (SkM) and a few heterologous samples (e.g., aorta, mammary epithelial cells, or brain) among the 38 types of human cell cultures or tissues examined. Most of the DMRs overlapped transcription regulatory elements, including canonical, alternative, or cryptic promoters; enhancers; CTCF binding sites; and long-noncoding RNA (lncRNA) gene regions. Among the prominent relationships between DMRs and expression was promoter-region hypermethylation accompanying repression in Mb but not in many other repressed samples (26 genes). Another surprising relationship was down-modulated (but not silenced) expression in Mb associated with DNA hypermethylation at cryptic enhancers in Mb although such methylation was absent in both non-expressing samples and highly expressing samples (24 genes). The tissue-specificity of DNA hypermethylation can be explained for many of the genes by their roles in prenatal development or by the tissue-specific expression of neighboring genes. Besides elucidating developmental epigenetics, our study provides insights into the roles of abnormal DNA methylation in disease, e.g., cancer, Duchenne muscular dystrophy, and congenital heart malformations.


2007 ◽  
Vol 101 (5) ◽  
pp. 1380-1391 ◽  
Author(s):  
Silvana Beri ◽  
Noemi Tonna ◽  
Giorgia Menozzi ◽  
Maria Clara Bonaglia ◽  
Carlo Sala ◽  
...  

Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4503-4508 ◽  
Author(s):  
Qianjin Lu ◽  
Donna Ray ◽  
David Gutsch ◽  
Bruce Richardson

LFA-1 (CD11a/CD18, αLβ2) is an integrin expressed in a tissue-specific fashion and is important in inflammatory and immune responses. Promoter analysis has identified transcription factors that may be involved in CD11a expression, but the mechanisms contributing to its tissue-specific expression are incompletely characterized. In this report we have asked if DNA methylation and/or chromatin structure could contribute to tissue-specific CD11a expression. Bisulfite sequencing was used to compare methylation patterns in the promoter and 5′ flanking regions of the ITGAL gene, encoding CD11a, in normal human T cells, which express LFA-1, and fibroblasts, which do not. The region was found to be heavily methylated in fibroblasts but not T cells, and methylation correlated with an inactive chromatin configuration as analyzed by deoxyribonuclease 1 sensitivity. Patch methylation of the promoter region revealed that promoter activity was methylation-sensitive but that methylation of the 5′ flanking regions more than 500 base pairs 5′ to the transcription start site could also suppress promoter function. Treating fibroblasts with a DNA methylation inhibitor decreased ITGAL promoter methylation and increased CD11a messenger RNA. The results thus indicate that methylation and chromatin structure may contribute to the tissue-specific expression of CD11a.


2003 ◽  
Vol 228 (4) ◽  
pp. 606-616 ◽  
Author(s):  
Li V. Yang ◽  
Henry H. Heng ◽  
Junmei Wan ◽  
Cherie M. Southwood ◽  
Alexander Gow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document