scholarly journals Changes in the Sterol Composition of the Plasma Membrane Affect Membrane Potential, Salt Tolerance and the Activity of Multidrug Resistance Pumps in Saccharomyces cerevisiae

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0139306 ◽  
Author(s):  
Marie Kodedová ◽  
Hana Sychrová
2001 ◽  
Vol 45 (5) ◽  
pp. 1528-1534 ◽  
Author(s):  
Patrı́cia A. Nunes ◽  
Sandra Tenreiro ◽  
Isabel Sá-Correia

ABSTRACT As predicted based on structural considerations, we show results indicating that the member of the major facilitator superfamily encoded by Saccharomyces cerevisiae open reading frameYIL120w is a multidrug resistance determinant. Yil120wp was implicated in yeast resistance to ketoconazole and quinidine, but not to the stereoisomer quinine; the gene was thus named QDR1. Qdr1p was proved to alleviate the deleterious effects of quinidine, revealed by the loss of cell viability following sudden exposure of the unadapted yeast population to the drug, and to allow the earlier eventual resumption of exponential growth under quinidine stress. However, QDR1 gene expression had no detectable effect on the susceptibility of yeast cells previously adapted to quinidine. Fluorescence microscopy observation of the distribution of the Qdr1-green fluorescent protein fusion protein in living yeast cells indicated that Qdr1p is a plasma membrane protein. We also show experimental evidence indicating that yeast adaptation to growth with quinidine involves the induction of active expulsion of the drug from preloaded cells, despite the fact that this antiarrhythmic and antimalarial quinoline ring-containing drug is not present in the yeast natural environment. However, we were not able to prove that Qdr1p is directly implicated in this export. Results clearly suggest that there are other unidentified quinidine resistance mechanisms that can be used in the absence of QDR1.


2005 ◽  
Vol 4 (2) ◽  
pp. 319-326 ◽  
Author(s):  
Jürgen Stolz ◽  
Heike J. P. Wöhrmann ◽  
Christian Vogl

ABSTRACT Amiloride, a diuretic drug that acts by inhibition of various sodium transporters, is toxic to the fission yeast Schizosaccharomyces pombe. Previous work has established that amiloride sensitivity is caused by expression of car1 +, which encodes a protein with similarity to plasma membrane drug/proton antiporters from the multidrug resistance family. Here we isolated car1 + by complementation of Saccharomyces cerevisiae mutants that are deficient in pyridoxine biosynthesis and uptake. Our data show that Car1p represents a new high-affinity, plasma membrane-localized import carrier for pyridoxine, pyridoxal, and pyridoxamine. We therefore propose the gene name bsu1 + (for vitamin B6 uptake) to replace car1 +. Bsu1p displays an acidic pH optimum and is inhibited by various protonophores, demonstrating that the protein works as a proton symporter. The expression of bsu1 + is associated with amiloride sensitivity and pyridoxine uptake in both S. cerevisiae and S. pombe cells. Moreover, amiloride acts as a competitor of pyridoxine uptake, demonstrating that both compounds are substrates of Bsu1p. Taken together, our data show that S. pombe and S. cerevisiae possess unrelated plasma membrane pyridoxine transporters. The S. pombe protein may be structurally related to the unknown human pyridoxine transporter, which is also inhibited by amiloride.


2011 ◽  
Vol 440 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Tânia R. Cabrito ◽  
Miguel C. Teixeira ◽  
Ashutosh Singh ◽  
Rajendra Prasad ◽  
Isabel Sá-Correia

The action of multidrug efflux pumps in MDR (multidrug resistance) acquisition has been proposed to partially depend on the transport of physiological substrates which may indirectly affect drug partition and transport across cell membranes. In the present study, the PDR18 gene [ORF (open reading frame) YNR070w], encoding a putative PDR (pleiotropic drug resistance) transporter of the ATP-binding cassette superfamily, was found to mediate plasma membrane sterol incorporation in yeast. The physiological role of Pdr18 is demonstrated to affect plasma membrane potential and is proposed to underlie its action as a MDR determinant, conferring resistance to the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). The action of Pdr18 in yeast tolerance to 2,4-D, which was found to contribute to reduce [14C]2,4-D intracellular accumulation, may be indirect, given the observation that 2,4-D exposure deeply affects the sterol plasma membrane composition, this effect being much stronger in a Δpdr18 background. PDR18 activation under 2,4-D stress is regulated by the transcription factors Nrg1, controlling carbon source availability and the stress response, and, less significantly, Yap1, involved in oxidative stress and MDR, and Pdr3, a key regulator of the yeast PDR network, consistent with a broad role in stress defence. Taken together, the results of the present study suggest that Pdr18 plays a role in plasma membrane sterol incorporation, this physiological trait contributing to an MDR phenotype.


1999 ◽  
Vol 19 (4) ◽  
pp. 2998-3009 ◽  
Author(s):  
David J. Katzmann ◽  
Eric A. Epping ◽  
W. Scott Moye-Rowley

ABSTRACT The ATP binding cassette (ABC) transporter protein Yor1p was identified on the basis of its ability to elevate oligomycin resistance when it was overproduced from a high-copy-number plasmid. Analysis of the predicted amino acid sequence of Yor1p indicated that this protein was a new member of a subfamily of ABC transporter proteins defined by the multidrug resistance protein (MRP). In this work, Yor1p is demonstrated to localize to the Saccharomyces cerevisiaeplasma membrane by both indirect immunofluorescence and biochemical fractionation studies. Several mutations were generated in the amino-terminal nucleotide binding domain (NBD1) of Yor1p to test if the high degree of sequence conservation in this region of the protein was important for function. Deletion of a phenylalanine residue at Yor1p position 670 led to a mutant protein that appeared to be retained in the endoplasmic reticulum (ER) and that was unstable. As shown by others, deletion of the analogous residue from a second mammalian MRP family member, the cystic fibrosis transmembrane conductance regulator (CFTR), also led to retention of this normally plasma membrane-localized protein in the ER. Changes in the spacing between or the sequences flanking functional motifs of Yor1p NBD1 led to defective trafficking or decreased activity of the mutant proteins. Analyses of the degradation of wild-type and ΔF670 Yor1p indicated that the half-life of ΔF670 Yor1p was dramatically shortened. While the vacuole was the primary site for turnover of wild-type Yor1p, degradation of ΔF670 Yor1p was found to be more complex with both proteasomal and vacuolar contributions.


1996 ◽  
Vol 133 (5) ◽  
pp. 1017-1026 ◽  
Author(s):  
A E Cleves ◽  
D N Cooper ◽  
S H Barondes ◽  
R B Kelly

Several physiologically important proteins lack a classical secretory signal sequence, yet they are secreted from cells. To investigate the secretion mechanism of such proteins, a representative mammalian protein that is exported by a nonclassical mechanism, galectin-1, has been expressed in yeast. Galectin-1 is exported across the yeast plasma membrane, and this export does not require the classical secretory pathway nor the yeast multidrug resistance-like protein Ste6p, the transporter for the peptide a factor. A screen for components of the export machinery has identified genes that are involved in nonclassical export. These findings demonstrate a new pathway for protein export that is distinct from the classical secretory pathway in yeast.


Sign in / Sign up

Export Citation Format

Share Document