scholarly journals Limited Dispersal and Significant Fine - Scale Genetic Structure in a Tropical Montane Parrot Species

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0169165 ◽  
Author(s):  
Nadine Klauke ◽  
H. Martin Schaefer ◽  
Michael Bauer ◽  
Gernot Segelbacher
Evolution ◽  
2013 ◽  
Vol 67 (12) ◽  
pp. 3488-3500 ◽  
Author(s):  
Colin J. Garroway ◽  
Reinder Radersma ◽  
Irem Sepil ◽  
Anna W. Santure ◽  
Isabelle De Cauwer ◽  
...  

2016 ◽  
Author(s):  
Stepfanie M. Aguillon ◽  
John W. Fitzpatrick ◽  
Reed Bowman ◽  
Stephan J. Schoech ◽  
Andrew G. Clark ◽  
...  

AbstractGeographically limited dispersal can shape genetic population structure and result in a correlation between genetic and geographic distance, commonly called isolation-bydistance. Despite the prevalence of isolation-by-distance in nature, to date few studies have empirically demonstrated the processes that generate this pattern, largely because few populations have direct measures of individual dispersal and pedigree information. Intensive, long-term demographic studies and exhaustive genomic surveys in the Florida Scrub-Jay (Aphelocoma coerulescens) provide an excellent opportunity to investigate the influence of dispersal on genetic structure. Here, we used a panel of genome-wide SNPs and extensive pedigree information to explore the role of limited dispersal in shaping patterns of isolation-by-distance in both sexes, and at an exceedingly fine spatial scale (within ~10 km). Isolation-by-distance patterns were stronger in male-male and male-female comparisons than in female-female comparisons, consistent with observed differences in dispersal propensity between the sexes. Using the pedigree, we demonstrated how various genealogical relationships contribute to fine-scale isolation-by-distance. Simulations using field-observed distributions of male and female natal dispersal distances showed good agreement with the distribution of geographic distances between breeding individuals of different pedigree relationship classes. Furthermore, we extended Malécot’s theory of isolation-by-distance by building coalescent simulations parameterized by the observed dispersal curve, population density, and immigration rate, and showed how incorporating these extensions allows us to accurately reconstruct observed sex-specific isolation-by-distance patterns in autosomal and Z-linked SNPs. Therefore, patterns of fine-scale isolation-by-distance in the Florida Scrub-Jay can be well understood as a result of limited dispersal over contemporary timescales.Author SummaryDispersal is a fundamental component of the life history of most organisms and therefore influences many biological processes. Dispersal is particularly important in creating genetic structure on the landscape. We often observe a pattern of decreased genetic relatedness between individuals as geographic distances increases, or isolation-by-distance. This pattern is particularly pronounced in organisms with extremely short dispersal distances. Despite the ubiquity of isolation-by-distance patterns in nature, there are few examples that explicitly demonstrate how limited dispersal influences spatial genetic structure. Here we investigate the processes that result in spatial genetic structure using the Florida Scrub-Jay, a bird with extremely limited dispersal behavior and extensive genome-wide data. We take advantage of the long-term monitoring of a contiguous population of Florida Scrub-Jays, which has resulted in a detailed pedigree and measurements of dispersal for hundreds of individuals. We show how limited dispersal results in close genealogical relatives living closer together geographically, which generates a strong pattern of isolation-by-distance at an extremely small spatial scale (<10 km) in just a few generations. Given the detailed dispersal, pedigree, and genomic data, we can achieve a fairly complete understanding of how dispersal shapes patterns of genetic diversity over short spatial scales.


2019 ◽  
Vol 112 (5) ◽  
pp. 2362-2368
Author(s):  
Yan Liu ◽  
Lei Chen ◽  
Xing-Zhi Duan ◽  
Dian-Shu Zhao ◽  
Jing-Tao Sun ◽  
...  

Abstract Deciphering genetic structure and inferring migration routes of insects with high migratory ability have been challenging, due to weak genetic differentiation and limited resolution offered by traditional genotyping methods. Here, we tested the ability of double digest restriction-site associated DNA sequencing (ddRADseq)-based single nucleotide polymorphisms (SNPs) in revealing the population structure relative to 13 microsatellite markers by using four small brown planthopper populations as subjects. Using ddRADseq, we identified 230,000 RAD loci and 5,535 SNP sites, which were present in at least 80% of individuals across the four populations with a minimum sequencing depth of 10. Our results show that this large SNP panel is more powerful than traditional microsatellite markers in revealing fine-scale population structure among the small brown planthopper populations. In contrast to the mixed population structure suggested by microsatellites, discriminant analysis of principal components (DAPC) of the SNP dataset clearly separated the individuals into four geographic populations. Our results also suggest the DAPC analysis is more powerful than the principal component analysis (PCA) in resolving population genetic structure of high migratory taxa, probably due to the advantages of DAPC in using more genetic variation and the discriminant analysis function. Together, these results point to ddRADseq being a promising approach for population genetic and migration studies of small brown planthopper.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florentine Riquet ◽  
Christiane-Arnilda De Kuyper ◽  
Cécile Fauvelot ◽  
Laura Airoldi ◽  
Serge Planes ◽  
...  

AbstractCystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. suffered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human-induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifically developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among fifteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and significant heterozygosity deficiencies across loci, likely explained by Wahlund effect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene flow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identification of relevant conservation and management measures for G. barbata: each population should be considered as separated evolutionary units with dedicated conservation efforts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin K. Esoh ◽  
Tobias O. Apinjoh ◽  
Steven G. Nyanjom ◽  
Ambroise Wonkam ◽  
Emile R. Chimusa ◽  
...  

AbstractInferences from genetic association studies rely largely on the definition and description of the underlying populations that highlight their genetic similarities and differences. The clustering of human populations into subgroups (population structure) can significantly confound disease associations. This study investigated the fine-scale genetic structure within Cameroon that may underlie disparities observed with Cameroonian ethnicities in malaria genome-wide association studies in sub-Saharan Africa. Genotype data of 1073 individuals from three regions and three ethnic groups in Cameroon were analyzed using measures of genetic proximity to ascertain fine-scale genetic structure. Model-based clustering revealed distinct ancestral proportions among the Bantu, Semi-Bantu and Foulbe ethnic groups, while haplotype-based coancestry estimation revealed possible longstanding and ongoing sympatric differentiation among individuals of the Foulbe ethnic group, and their Bantu and Semi-Bantu counterparts. A genome scan found strong selection signatures in the HLA gene region, confirming longstanding knowledge of natural selection on this genomic region in African populations following immense disease pressure. Signatures of selection were also observed in the HBB gene cluster, a genomic region known to be under strong balancing selection in sub-Saharan Africa due to its co-evolution with malaria. This study further supports the role of evolution in shaping genomes of Cameroonian populations and reveals fine-scale hierarchical structure among and within Cameroonian ethnicities that may impact genetic association studies in the country.


2021 ◽  
Author(s):  
Francesca S. E. Dawson Pell ◽  
Juan Carlos Senar ◽  
Daniel W. Franks ◽  
Ben J. Hatchwell

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1803
Author(s):  
Valentino Palombo ◽  
Elena De Zio ◽  
Giovanna Salvatore ◽  
Stefano Esposito ◽  
Nicolaia Iaffaldano ◽  
...  

Mediterranean trout is a freshwater fish of particular interest with economic significance for fishery management, aquaculture and conservation biology. Unfortunately, native trout populations’ abundance is significantly threatened by anthropogenic disturbance. The introduction of commercial hatchery strains for recreation activities has compromised the genetic integrity status of native populations. This work assessed the fine-scale genetic structure of Mediterranean trout in the two main rivers of Molise region (Italy) to support conservation actions. In total, 288 specimens were caught in 28 different sites (14 per basins) and genotyped using the Affymetrix 57 K rainbow-trout-derived SNP array. Population differentiation was analyzed using pairwise weighted FST and overall F-statistic estimated by locus-by-locus analysis of molecular variance. Furthermore, an SNP data set was processed through principal coordinates analysis, discriminant analysis of principal components and admixture Bayesian clustering analysis. Firstly, our results demonstrated that rainbow trout SNP array can be successfully used for Mediterranean trout genotyping. In fact, despite an overwhelming number of loci that resulted as monomorphic in our populations, it must be emphasized that the resulted number of polymorphic loci (i.e., ~900 SNPs) has been sufficient to reveal a fine-scale genetic structure in the investigated populations, which is useful in supporting conservation and management actions. In particular, our findings allowed us to select candidate sites for the collection of adults, needed for the production of genetically pure juvenile trout, and sites to carry out the eradication of alien trout and successive re-introduction of native trout.


2016 ◽  
Vol 73 (9) ◽  
pp. 2333-2341 ◽  
Author(s):  
Jennifer R. Ovenden ◽  
Bree J. Tillett ◽  
Michael Macbeth ◽  
Damien Broderick ◽  
Fiona Filardo ◽  
...  

Abstract We report population genetic structure and fine-scale recruitment processes for the scallop beds (Pecten fumatus) in Bass Strait and the eastern coastline of Tasmania in southern Australia. Conventional population pairwise FST analyses are compared with novel discriminant analysis of principal components (DAPC) to assess population genetic structure using allelic variation in 11 microsatellite loci. Fine-scale population connectivity was compared with oceanic features of the sampled area. Disjunct scallop beds were genetically distinct, but there was little population genetic structure between beds connected by tides and oceanic currents. To identify recruitment patterns among and within beds, pedigree analyses determined the distribution of parent–offspring and sibling relationships in the sampled populations. Beds in northeastern Bass Strait were genetically distinct to adjacent beds (FST 0.003–0.005) and may not contribute to wider recruitment based on biophysical models of larval movement. Unfortunately, pedigree analyses lacked power to further dissect fine-scale recruitment processes including self-recruitment. Our results support the management of disjunct populations as separate stocks and the protection of source populations among open water beds. The application of DAPC and parentage analyses in the current study provided valuable insight into their potential power to determine population connectivity in marine species with larval dispersal.


Sign in / Sign up

Export Citation Format

Share Document