scholarly journals Review of machine learning methods in soft robotics

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246102
Author(s):  
Daekyum Kim ◽  
Sang-Hun Kim ◽  
Taekyoung Kim ◽  
Brian Byunghyun Kang ◽  
Minhyuk Lee ◽  
...  

Soft robots have been extensively researched due to their flexible, deformable, and adaptive characteristics. However, compared to rigid robots, soft robots have issues in modeling, calibration, and control in that the innate characteristics of the soft materials can cause complex behaviors due to non-linearity and hysteresis. To overcome these limitations, recent studies have applied various approaches based on machine learning. This paper presents existing machine learning techniques in the soft robotic fields and categorizes the implementation of machine learning approaches in different soft robotic applications, which include soft sensors, soft actuators, and applications such as soft wearable robots. An analysis of the trends of different machine learning approaches with respect to different types of soft robot applications is presented; in addition to the current limitations in the research field, followed by a summary of the existing machine learning methods for soft robots.

2019 ◽  
Author(s):  
Saqib A Rahman ◽  
Robert C Walker ◽  
Megan A Lloyd ◽  
Ben L Grace ◽  
Gijs I van Boxel ◽  
...  

ABSTRACTObjectiveTo develop a predictive model for early recurrence after surgery for oesophageal adenocarcinoma using a large multi-national cohort.Summary Background DataEarly cancer recurrence after oesophagectomy is a common problem with an incidence of 20-30% despite the widespread use of neoadjuvant treatment. Quantification of this risk is difficult and existing models perform poorly. Machine learning techniques potentially allow more accurate prognostication and have been applied in this study.MethodsConsecutive patients who underwent oesophagectomy for adenocarcinoma and had neoadjuvant treatment in 6 UK and 1 Dutch oesophago-gastric units were analysed. Using clinical characteristics and post-operative histopathology, models were generated using elastic net regression (ELR) and the machine learning methods random forest (RF) and XG boost (XGB). Finally, a combined (Ensemble) model of these was generated. The relative importance of factors to outcome was calculated as a percentage contribution to the model.ResultsIn total 812 patients were included. The recurrence rate at less than 1 year was 29.1%. All of the models demonstrated good discrimination. Internally validated AUCs were similar, with the Ensemble model performing best (ELR=0.785, RF=0.789, XGB=0.794, Ensemble=0.806). Performance was similar when using internal-external validation (validation across sites, Ensemble AUC=0.804). In the final model the most important variables were number of positive lymph nodes (25.7%) and vascular invasion (16.9%).ConclusionsThe derived model using machine learning approaches and an international dataset provided excellent performance in quantifying the risk of early recurrence after surgery and will be useful in prognostication for clinicians and patients.DRAFT VISUAL ABSTRACTIcons taken from www.flaticon.com, made by ‘Freepik’, ‘smashicons’, and ‘prettycons’. Reproduced under creative commons attribution licenseMINI-ABSTRACTEarly recurrence after surgery for adenocarcinoma of the oesophagus is common. We derived a risk prediction model using modern machine learning methods that accurately predicts risk of early recurrence using post-operative pathology


2021 ◽  
Author(s):  
Pablo Cresta Morgado ◽  
Martín Carusso ◽  
Laura Alonso Alemany ◽  
Laura Acion

In a continuum with applied statistics, machine learning offers a wide variety of tools to explore, analyze, and understand addiction data. These tools include algorithms that can leverage useful information from data to build models. These models are capable of addressing different scientific problems. In this second part of this two-part machine learning review, we develop how to apply machine learning methods. We explain the main limitations of machine learning approaches and ways to address them. Like other analytical tools, machine learning methods require careful implementation to carry out a reproducible and transparent research process with reliable results. This review describes a helpful workflow to guide the application of machine learning. This workflow has several steps: study design, data collection, data pre-processing, modeling, and communication. How to train, validate and test a model, detect and characterize overfitting, and determine an adequate sample size are some of the key issues to handle when applying machine learning. We also illustrate the process and particular nuances with examples of how researchers in addiction have applied machine learning techniques with different goals, study designs, or data sources.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Khushnood Abbas ◽  
Alireza Abbasi ◽  
Shi Dong ◽  
Ling Niu ◽  
Laihang Yu ◽  
...  

Abstract Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug–drug, drug–disease, and protein–protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches. Results We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone, ACT and $$LRW_5$$ L R W 5 are the top 3 best performers on all five datasets. Conclusions This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug–drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.


2021 ◽  
Vol 10 (4) ◽  
pp. 199
Author(s):  
Francisco M. Bellas Aláez ◽  
Jesus M. Torres Palenzuela ◽  
Evangelos Spyrakos ◽  
Luis González Vilas

This work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2012 ◽  
Author(s):  
Hashem Koohy

In the era of explosion in biological data, machine learning techniques are becoming more popular in life sciences, including biology and medicine. This research note examines the rise and fall of the most commonly used machine learning techniques in life sciences over the past three decades.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jinyu Zang ◽  
Yuanyuan Huang ◽  
Lingyin Kong ◽  
Bingye Lei ◽  
Pengfei Ke ◽  
...  

Recently, machine learning techniques have been widely applied in discriminative studies of schizophrenia (SZ) patients with multimodal magnetic resonance imaging (MRI); however, the effects of brain atlases and machine learning methods remain largely unknown. In this study, we collected MRI data for 61 first-episode SZ patients (FESZ), 79 chronic SZ patients (CSZ) and 205 normal controls (NC) and calculated 4 MRI measurements, including regional gray matter volume (GMV), regional homogeneity (ReHo), amplitude of low-frequency fluctuation and degree centrality. We systematically analyzed the performance of two classifications (SZ vs NC; FESZ vs CSZ) based on the combinations of three brain atlases, five classifiers, two cross validation methods and 3 dimensionality reduction algorithms. Our results showed that the groupwise whole-brain atlas with 268 ROIs outperformed the other two brain atlases. In addition, the leave-one-out cross validation was the best cross validation method to select the best hyperparameter set, but the classification performances by different classifiers and dimensionality reduction algorithms were quite similar. Importantly, the contributions of input features to both classifications were higher with the GMV and ReHo features of brain regions in the prefrontal and temporal gyri. Furthermore, an ensemble learning method was performed to establish an integrated model, in which classification performance was improved. Taken together, these findings indicated the effects of these factors in constructing effective classifiers for psychiatric diseases and showed that the integrated model has the potential to improve the clinical diagnosis and treatment evaluation of SZ.


Author(s):  
Basant Agarwal ◽  
Namita Mittal

Opinion Mining or Sentiment Analysis is the study that analyzes people's opinions or sentiments from the text towards entities such as products and services. It has always been important to know what other people think. With the rapid growth of availability and popularity of online review sites, blogs', forums', and social networking sites' necessity of analysing and understanding these reviews has arisen. The main approaches for sentiment analysis can be categorized into semantic orientation-based approaches, knowledge-based, and machine-learning algorithms. This chapter surveys the machine learning approaches applied to sentiment analysis-based applications. The main emphasis of this chapter is to discuss the research involved in applying machine learning methods mostly for sentiment classification at document level. Machine learning-based approaches work in the following phases, which are discussed in detail in this chapter for sentiment classification: (1) feature extraction, (2) feature weighting schemes, (3) feature selection, and (4) machine-learning methods. This chapter also discusses the standard free benchmark datasets and evaluation methods for sentiment analysis. The authors conclude the chapter with a comparative study of some state-of-the-art methods for sentiment analysis and some possible future research directions in opinion mining and sentiment analysis.


Big Data ◽  
2016 ◽  
pp. 1917-1933
Author(s):  
Basant Agarwal ◽  
Namita Mittal

Opinion Mining or Sentiment Analysis is the study that analyzes people's opinions or sentiments from the text towards entities such as products and services. It has always been important to know what other people think. With the rapid growth of availability and popularity of online review sites, blogs', forums', and social networking sites' necessity of analysing and understanding these reviews has arisen. The main approaches for sentiment analysis can be categorized into semantic orientation-based approaches, knowledge-based, and machine-learning algorithms. This chapter surveys the machine learning approaches applied to sentiment analysis-based applications. The main emphasis of this chapter is to discuss the research involved in applying machine learning methods mostly for sentiment classification at document level. Machine learning-based approaches work in the following phases, which are discussed in detail in this chapter for sentiment classification: (1) feature extraction, (2) feature weighting schemes, (3) feature selection, and (4) machine-learning methods. This chapter also discusses the standard free benchmark datasets and evaluation methods for sentiment analysis. The authors conclude the chapter with a comparative study of some state-of-the-art methods for sentiment analysis and some possible future research directions in opinion mining and sentiment analysis.


2020 ◽  
Vol 30 (Suppl 1) ◽  
pp. 217-228 ◽  
Author(s):  
Sanjay Basu ◽  
James H. Faghmous ◽  
Patrick Doupe

  Precision medicine research designed to reduce health disparities often involves studying multi-level datasets to understand how diseases manifest disproportionately in one group over another, and how scarce health care resources can be directed precisely to those most at risk for disease. In this article, we provide a structured tutorial for medical and public health research­ers on the application of machine learning methods to conduct precision medicine research designed to reduce health dispari­ties. We review key terms and concepts for understanding machine learning papers, including supervised and unsupervised learning, regularization, cross-validation, bagging, and boosting. Metrics are reviewed for evaluating machine learners and major families of learning approaches, including tree-based learning, deep learning, and ensemble learning. We highlight the advan­tages and disadvantages of different learning approaches, describe strategies for interpret­ing “black box” models, and demonstrate the application of common methods in an example dataset with open-source statistical code in R.Ethn Dis. 2020;30(Suppl 1):217-228; doi:10.18865/ed.30.S1.217


2020 ◽  
Vol 33 (5) ◽  
pp. 1224-1241 ◽  
Author(s):  
Imene Mecheter ◽  
Lejla Alic ◽  
Maysam Abbod ◽  
Abbes Amira ◽  
Jim Ji

Abstract Recent emerging hybrid technology of positron emission tomography/magnetic resonance (PET/MR) imaging has generated a great need for an accurate MR image-based PET attenuation correction. MR image segmentation, as a robust and simple method for PET attenuation correction, has been clinically adopted in commercial PET/MR scanners. The general approach in this method is to segment the MR image into different tissue types, each assigned an attenuation constant as in an X-ray CT image. Machine learning techniques such as clustering, classification and deep networks are extensively used for brain MR image segmentation. However, only limited work has been reported on using deep learning in brain PET attenuation correction. In addition, there is a lack of clinical evaluation of machine learning methods in this application. The aim of this review is to study the use of machine learning methods for MR image segmentation and its application in attenuation correction for PET brain imaging. Furthermore, challenges and future opportunities in MR image-based PET attenuation correction are discussed.


Sign in / Sign up

Export Citation Format

Share Document