scholarly journals Ion homeostasis and Na+ transport-related gene expression in two cotton (Gossypium hirsutum L.) varieties under saline, alkaline and saline-alkaline stresses

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256000
Author(s):  
Jialin Sun ◽  
Shuangnan Li ◽  
Huijuan Guo ◽  
Zhenan Hou

The sensitivity of cotton to salt stress depends on the genotypes and salt types. Understanding the mechanism of ion homeostasis under different salt stresses is necessary to improve cotton performance under saline conditions. A pot experiment using three salt stresses saline stress (NaCl+Na2SO4), alkaline stress (Na2CO3+NaHCO3), and saline-alkaline stress (NaCl+Na2SO4+Na2CO3+NaHCO3) and two cotton varieties (salt-tolerant variety L24 and salt-sensitive variety G1) was conducted. The growth, ion concentrations, and Na+ transport-related gene expression in the cotton varieties were determined. The inhibitory effects of saline-alkaline stress on cotton growth were greater than that of either saline stress or alkaline stress alone. The root/shoot ratio under alkaline stress was significantly lower than that under saline stress. The salt-tolerant cotton variety had lower Na and higher K concentrations in the leaves, stems and roots than the salt-sensitive variety under different salt stresses. For the salt-sensitive cotton variety, saline stress significantly inhibited the absorption of P and the transport of P, K, and Mg, while alkaline stress and saline-alkaline stress significantly inhibited the uptake and transport of P, K, Ca, Mg, and Zn. Most of the elements in the salt-tolerant variety accumulated in the leaves and stems under different salt stresses. This indicated that the salt-tolerant variety had a stronger ion transport capacity than the salt-sensitive variety under saline conditions. Under alkaline stress and salt-alkaline stress, the relative expression levels of the genes GhSOS1, GhNHX1 and GhAKT1 in the salt-tolerant variety were significantly higher than that in the salt-sensitive variety. These results suggest that this salt-tolerant variety of cotton has an internal mechanism to maintain ionic homeostasis.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Ibrahim Al-Ashkar ◽  
Walid Ben Romdhane ◽  
Rania A. El-Said ◽  
Abdelhalim Ghazy ◽  
Kotb Attia ◽  
...  

Salinity majorly hinders horizontal and vertical expansion in worldwide wheat production. Productivity can be enhanced using salt-tolerant wheat genotypes. However, the assessment of salt tolerance potential in bread wheat doubled haploid lines (DHL) through agro-physiological traits and stress-related gene expression analysis could potentially minimize the cost of breeding programs and be a powerful way for the selection of the most salt-tolerant genotype. We used an extensive set of agro-physiologic parameters and salt-stress-related gene expressions. Multivariate analysis was used to detect phenotypic and genetic variations of wheat genotypes more closely under salinity stress, and we analyzed how these strategies effectively balance each other. Four doubled haploid lines (DHLs) and the check cultivar (Sakha93) were evaluated in two salinity levels (without and 150 mM NaCl) until harvest. The five genotypes showed reduced growth under 150 mM NaCl; however, the check cultivar (Sakha93) died at the beginning of the flowering stage. Salt stress induced reduction traits, except the canopy temperature and initial electrical conductivity, which was found in each of the five genotypes, with the greatest decline occurring in the check cultivar (Sakha-93) and the least decline in DHL2. The genotypes DHL21 and DHL5 exhibited increased expression rate of salt-stress-related genes (TaNHX1, TaHKT1, and TaCAT1) compared with DHL2 and Sakha93 under salt stress conditions. Principle component analysis detection of the first two components explains 70.78% of the overall variation of all traits (28 out of 32 traits). A multiple linear regression model and path coefficient analysis showed a coefficient of determination (R2) of 0.93. The models identified two interpretive variables, number of spikelets, and/or number of kernels, which can be unbiased traits for assessing wheat DHLs under salinity stress conditions, given their contribution and direct impact on the grain yield.


2019 ◽  
Vol 70 (19) ◽  
pp. 5355-5374 ◽  
Author(s):  
Dandan Zang ◽  
Jingxin Wang ◽  
Xin Zhang ◽  
Zhujun Liu ◽  
Yucheng Wang

Abstract Plant heat shock transcription factors (HSFs) are involved in heat and other abiotic stress responses. However, their functions in salt tolerance are little known. In this study, we characterized the function of a HSF from Arabidopsis, AtHSFA7b, in salt tolerance. AtHSFA7b is a nuclear protein with transactivation activity. ChIP-seq combined with an RNA-seq assay indicated that AtHSFA7b preferentially binds to a novel cis-acting element, termed the E-box-like motif, to regulate gene expression; it also binds to the heat shock element motif. Under salt conditions, AtHSFA7b regulates its target genes to mediate serial physiological changes, including maintaining cellular ion homeostasis, reducing water loss rate, decreasing reactive oxygen species accumulation, and adjusting osmotic potential, which ultimately leads to improved salt tolerance. Additionally, most cellulose synthase-like (CSL) and cellulose synthase (CESA) family genes were inhibited by AtHSFA7b; some of them were randomly selected for salt tolerance characterization, and they were mainly found to negatively modulate salt tolerance. By contrast, some transcription factors (TFs) were induced by AtHSFA7b; among them, we randomly identified six TFs that positively regulate salt tolerance. Thus, AtHSFA7b serves as a transactivator that positively mediates salinity tolerance mainly through binding to the E-box-like motif to regulate gene expression.


Meat Science ◽  
2017 ◽  
Vol 124 ◽  
pp. 84-94 ◽  
Author(s):  
Joël D'Astous-Pagé ◽  
Claude Gariépy ◽  
Richard Blouin ◽  
Simon Cliche ◽  
Brian Sullivan ◽  
...  

2020 ◽  
Vol 59 (4) ◽  
pp. 669-676 ◽  
Author(s):  
Pedro Negri ◽  
Leonor Ramirez ◽  
Silvina Quintana ◽  
Nicolas Szawarski ◽  
Matías D. Maggi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document