scholarly journals Temporal binding window and sense of agency are related processes modifiable via occipital tACS

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256987
Author(s):  
Agnese Venskus ◽  
Francesca Ferri ◽  
Daniele Migliorati ◽  
Sara Spadone ◽  
Marcello Costantini ◽  
...  

The temporal binding window refers to the time frame within which temporal grouping of sensory information takes place. Sense of agency is the feeling of being in control of one’s actions, and their associated outcomes. While previous research has shown that temporal cues and multisensory integration play a role in sense of agency, no studies have directly assessed whether individual differences in the temporal binding window and sense of agency are associated. In all three experiments, to assess sense of agency, participants pressed a button triggering, after a varying delay, the appearance of the circle, and reported their sense of agency over the effect. To assess the temporal binding window a simultaneity judgment task (Experiment 1) and a double-flash illusion task (Experiment 2 and 3) was also performed. As expected, the temporal binding window correlated with the sense of agency window. In Experiment 3, these processes were modulated by applying occipital tACS at either 14Hz or 8Hz. We found 14Hz tACS stimulation was associated with narrower temporal biding window and sense of agency window. Our results suggest the temporal binding window and the time window of sense of agency are related. They also point towards a possible underlying neural mechanism (alpha peak frequency) for this association.

2020 ◽  
Vol 33 (7) ◽  
pp. 777-791
Author(s):  
Sofia Tagini ◽  
Federica Scarpina ◽  
Massimo Scacchi ◽  
Alessandro Mauro ◽  
Massimiliano Zampini

Abstract Preliminary evidence showed a reduced temporal sensitivity (i.e., larger temporal binding window) to audiovisual asynchrony in obesity. Our aim was to extend this investigation to visuotactile stimuli, comparing individuals of healthy weight and with obesity in a simultaneity judgment task. We verified that individuals with obesity had a larger temporal binding window than healthy-weight individuals, meaning that they tend to integrate visuotactile stimuli over an extended range of stimulus onset asynchronies. We point out that our finding gives evidence in support of a more pervasive impairment of the temporal discrimination of co-occurrent stimuli, which might affect multisensory integration in obesity. We discuss our results referring to the possible role of atypical oscillatory neural activity and structural anomalies in affecting the perception of simultaneity between multisensory stimuli in obesity. Finally, we highlight the urgency of a deeper understanding of multisensory integration in obesity at least for two reasons. First, multisensory bodily illusions might be used to manipulate body dissatisfaction in obesity. Second, multisensory integration anomalies in obesity might lead to a dissimilar perception of food, encouraging overeating behaviours.


Author(s):  
Francesca Ferri ◽  
Vittorio Gallese

This chapter illustrates the most recent empirical evidence of anomalies of body experiences in schizophrenia and schizotypy, with a specific focus on body ownership, sense of agency, and self-other boundary. The authors link these anomalies of body experiences to a reduced temporal sensitivity of multisensory processing, as indexed by an abnormally wide temporal binding window, which has been reported in both schizophrenia and schizotypy. Then, the authors propose specific neurobiological markers possibly associated with temporal anomalies of multisensory processing and, consequently, body experiences in schizophrenia and schizotypy. They refer specifically to the role of disorganized patterns of spontaneous brain activity, and the underlying excitation/inhibition imbalance, as a possible key to understanding anomalies of bodily-self experiences in self-disorders.


2020 ◽  
Vol 50 (11) ◽  
pp. 3944-3956 ◽  
Author(s):  
Sayaka Kawakami ◽  
Shota Uono ◽  
Sadao Otsuka ◽  
Sayaka Yoshimura ◽  
Shuo Zhao ◽  
...  

Abstract The present study examined the relationship between multisensory integration and the temporal binding window (TBW) for multisensory processing in adults with Autism spectrum disorder (ASD). The ASD group was less likely than the typically developing group to perceive an illusory flash induced by multisensory integration during a sound-induced flash illusion (SIFI) task. Although both groups showed comparable TBWs during the multisensory temporal order judgment task, correlation analyses and Bayes factors provided moderate evidence that the reduced SIFI susceptibility was associated with the narrow TBW in the ASD group. These results suggest that the individuals with ASD exhibited atypical multisensory integration and that individual differences in the efficacy of this process might be affected by the temporal processing of multisensory information.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Fabian López

Palabras claves: Algoritmos genéticos, logística de ruteo, metaheuristicas, secuenciaciónResumen. En la solución de problemas combinatorios, es importante evaluar el costo-beneficio entre la obtención de soluciones de alta calidad en detrimento de los recursos computacionales requeridos. El problema planteado es para el ruteo de un vehículo con entrega y recolección de producto y con restricciones de ventana de horario. En la práctica, dicho problema requiere ser atendido con instancias de gran escala (nodos ≥100). Existe un fuerte porcentaje de ventanas de horario activas (≥90%) y con factores de amplitud ≥75%. El problema es NP-hard y por tal motivo la aplicación de un método de solución exacta para resolverlo en la práctica, está limitado por el tiempo requerido para la actividad de ruteo. Se propone un algoritmo genético especializado, el cual ofrece soluciones de buena calidad (% de optimalidad aceptables) y en tiempos de ejecución computacional que hacen útil su aplicación en la práctica de la logística. Para comprobar la eficacia de la propuesta algorítmica se desarrolla un diseño experimental el cual hará uso de las soluciones óptimas obtenidas mediante un algoritmo de ramificación y corte sin límite de tiempo. Los resultados son favorables.Key words: Genetic algorithms, routing logistics, metaheuristics, schedulingAbstract. In an attempt to sovle the combinatorics problems, it is important to evaluate the costbenefit ratio between obtaining solutions of high quality and the loss of the computational resources required. The problem presented is for the routing of a vehicle with pickup and delivery of products with time window constraints. This problem requires instances of great scale (nodes≥100). A strong active time window percentage exists (≥90%) with factors of amplitude ≥75%. The problem is NP-hard and hence, the application of an exact method of solution, is limited by the time frame required for routing activity. A specialized genetic algorithm is proposed, which offers solutions of high precision and in computational times that makes its practical application useful. An experimental design is developed with good results that makes use of optimum solutions obtained by means of branch and cut algorithm without time limit.


2014 ◽  
Vol 37 (6) ◽  
pp. E3 ◽  
Author(s):  
Stephanie Lescher ◽  
Sonja Schniewindt ◽  
Alina Jurcoane ◽  
Christian Senft ◽  
Elke Hattingen

Object Early postoperative MRI within 72 hours after brain tumor surgery is commonly used to assess residual contrast-enhancing tumor. The 72-hour window is commonly accepted because previous 1.5-T MRI studies have not found confounding postoperative reactive contrast enhancement in this time frame. The sensitivity to detect contrast enhancement increases with the field strengths. Therefore, the authors aimed to assess whether the 72-hour window is also appropriate for the MRI scanner with a field strength of 3 T. Methods The authors retrospectively analyzed findings on early postsurgical MR images acquired in 46 patients treated for high-grade gliomas. They performed 3-T MRI within 7 days before surgery and within 72 hours thereafter. The appearance of enhancement was categorized as postoperative reactive enhancement or tumoral enhancement by comparison with the pattern and location of presurgical enhancing tumor. Results Postoperative reactive enhancement was present in 15 patients (32.6%). This enhancement, not seen on presurgical MRI, had a marginal or leptomeningeal/dural pattern. In 13 patients (28.3%) postsurgical enhancement was found within the first 72 postoperative hours, with the earliest seen 22:57 hours after surgery. Subsequent MR scans in patients with postoperative reactive enhancement did not reveal tumor recurrence in these regions. Conclusions Postoperative reactive enhancement earlier than 72 hours after brain tumor surgery can be expected in about one-third of the cases in which a 3-T scanner is used. This might be due to the higher enhancement-to-brain contrast at higher field strengths. Therefore, the time window of 72 hours does not prevent reactive enhancement, which, however, can be recognized as such comparing it with presurgical enhancing tumor.


2012 ◽  
Vol 25 (0) ◽  
pp. 107
Author(s):  
Nai-Yuan Nicholas Chang ◽  
Alex K. Malone ◽  
Timothy E. Hullar

Imbalance among patients with vestibular hypofunction has been related to inadequate compensatory eye movements in response to head movements. However, symptoms of imbalance might also occur due a temporal mismatch between vestibular and other balance-related sensory cues. This temporal mismatch could be reflected in a widened temporal binding window (TBW), or the length of time over which simultaneous sensory stimuli may be offset and still perceived as simultaneous. We hypothesized that decreased vestibular input would lead to a widening of the temporal binding window. We performed whole-body rotations about the earth-vertical axis following a sinusoidal trajectory at 0.5 Hz with a peak velocity of 60°/s in four normal subjects. Dichotic auditory clicks were presented through headphones at various phases relative to the rotations. Subjects were asked to indicate whether the cues were synchronous or asynchronous and the TBW was calculated. We then simulated decreased vestibular input by rotating at diminished peak velocities of 48, 24 and 12°/s in four normal subjects. TBW was calculated between ±1 SD away from the mean on the psychometric curve. We found that the TBW increases as amplitude of rotation decreases. Average TBW of 251 ms at 60°/s increased to 309 ms at 12°/s. This result leads to the novel conclusion that changes in temporal processing may be a mechanism for imbalance in patients with vestibular hypofunction.


2014 ◽  
Vol 10 (6) ◽  
pp. 2237-2252 ◽  
Author(s):  
I. Hessler ◽  
S. P. Harrison ◽  
M. Kucera ◽  
C. Waelbroeck ◽  
M.-T. Chen ◽  
...  

Abstract. We present and examine a multi-sensor global compilation of mid-Holocene (MH) sea surface temperatures (SST), based on Mg/Ca and alkenone palaeothermometry and reconstructions obtained using planktonic foraminifera and organic-walled dinoflagellate cyst census counts. We assess the uncertainties originating from using different methodologies and evaluate the potential of MH SST reconstructions as a benchmark for climate-model simulations. The comparison between different analytical approaches (time frame, baseline climate) shows the choice of time window for the MH has a negligible effect on the reconstructed SST pattern, but the choice of baseline climate affects both the magnitude and spatial pattern of the reconstructed SSTs. Comparison of the SST reconstructions made using different sensors shows significant discrepancies at a regional scale, with uncertainties often exceeding the reconstructed SST anomaly. Apparent patterns in SST may largely be a reflection of the use of different sensors in different regions. Overall, the uncertainties associated with the SST reconstructions are generally larger than the MH anomalies. Thus, the SST data currently available cannot serve as a target for benchmarking model simulations. Further evaluations of potential subsurface and/or seasonal artifacts that may contribute to obscure the MH SST reconstructions are urgently needed to provide reliable benchmarks for model evaluations.


i-Perception ◽  
10.1068/ic760 ◽  
2011 ◽  
Vol 2 (8) ◽  
pp. 760-760
Author(s):  
Ryan A Stevenson ◽  
Mark T Wallace

i-Perception ◽  
10.1068/ic903 ◽  
2011 ◽  
Vol 2 (8) ◽  
pp. 903-903
Author(s):  
Ryan A Stevenson ◽  
Raquel K Zemtsov ◽  
Mark T Wallace

2018 ◽  
Vol 31 (6) ◽  
pp. 523-536 ◽  
Author(s):  
Ayako Yaguchi ◽  
Souta Hidaka

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and interaction, and restricted interests and behavior patterns. These characteristics are considered as a continuous distribution in the general population. People with ASD show atypical temporal processing in multisensory integration. Regarding the flash–beep illusion, which refers to how a single flash can be illusorily perceived as multiple flashes when multiple auditory beeps are concurrently presented, some studies reported that people with ASD have a wider temporal binding window and greater integration than typically developed people; others found the opposite or inconsistent tendencies. Here, we investigated the relationships between the manner of the flash–beep illusion and the various dimensions of ASD traits by estimating the degree of typically developed participants’ ASD traits including five subscales using the Autism-Spectrum Quotient. We found that stronger ASD traits of communication and social skill were associated with a wider and narrower temporal binding window respectively. These results suggest that specific ASD traits are differently involved in the particular temporal binding processes of audiovisual integration.


Sign in / Sign up

Export Citation Format

Share Document