scholarly journals The secondary messenger ppGpp interferes with cAMP-CRP regulon by promoting CRP acetylation in Escherichia coli

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259067
Author(s):  
Chunghwan Ro ◽  
Michael Cashel ◽  
Llorenç Fernández-Coll

The cAMP-CRP regulon coordinates transcription regulation of several energy-related genes, the lac operon among them. Lactose, or IPTG, induces the lac operon expression by binding to the LacI repressor, and releasing it from the promoter sequence. At the same time, the expression of the lac operon requires the presence of the CRP-cAMP complex, which promotes the binding of the RNA polymerase to the promoter region. The modified nucleotide cAMP accumulates in the absence of glucose and binds to the CRP protein, but its ability to bind to DNA can be impaired by lysine-acetylation of CRP. Here we add another layer of control, as acetylation of CRP seems to be modified by ppGpp. In cells grown in glycerol minimal media, ppGpp seems to repress the expression of lacZ, where ΔrelA mutants show higher expression of lacZ than in WT. These differences between the WT and ΔrelA strains seem to depend on the levels of acetylated CRP. During the growth in minimal media supplemented with glycerol, ppGpp promotes the acetylation of CRP by the Nε-lysine acetyltransferases YfiQ. Moreover, the expression of the different genes involved in the production and degradation of Acetyl-phosphate (ackA-pta) and the enzymatic acetylation of proteins (yfiQ) are stimulated by the presence of ppGpp, depending on the growth conditions.

2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Birgit Schilling ◽  
Nathan Basisty ◽  
David G. Christensen ◽  
Dylan Sorensen ◽  
James S. Orr ◽  
...  

ABSTRACT Lysine acetylation is thought to provide a mechanism for regulating metabolism in diverse bacteria. Indeed, many studies have shown that the majority of enzymes involved in central metabolism are acetylated and that acetylation can alter enzyme activity. However, the details regarding this regulatory mechanism are still unclear, specifically with regard to the signals that induce lysine acetylation. To better understand this global regulatory mechanism, we profiled changes in lysine acetylation during growth of Escherichia coli on the hexose glucose or the pentose xylose at both high and low sugar concentrations using label-free mass spectrometry. The goal was to see whether lysine acetylation differed during growth on these two different sugars. No significant differences, however, were observed. Rather, the initial sugar concentration was the principal factor governing changes in lysine acetylation, with higher sugar concentrations causing more acetylation. These results suggest that acetylation does not target specific metabolic pathways but rather simply targets accessible lysines, which may or may not alter enzyme activity. They further suggest that lysine acetylation principally results from conditions that favor accumulation of acetyl phosphate, the principal acetate donor in E. coli. IMPORTANCE Bacteria alter their metabolism in response to nutrient availability, growth conditions, and environmental stresses using a number of different mechanisms. One is lysine acetylation, a posttranslational modification known to target many metabolic enzymes. However, little is known about this regulatory mode. We investigated the factors inducing changes in lysine acetylation by comparing growth on glucose and xylose. We found that the specific sugar used for growth did not alter the pattern of acetylation; rather, the amount of sugar did, with more sugar causing more acetylation. These results imply that lysine acetylation is a global regulatory mechanism that is responsive not to the specific carbon source per se but rather to the accumulation of downstream metabolites.


2018 ◽  
Author(s):  
Birgit Schilling ◽  
Nathan Basisty ◽  
David G. Christensen ◽  
Dylan Sorensen ◽  
James S. Orr ◽  
...  

ABSTRACTLysine acetylation is thought to provide a mechanism for regulating metabolism in diverse bacteria. Indeed, many studies have shown that the majority of enzymes involved in central metabolism are acetylated and that acetylation can alter enzyme activity. However, the details regarding this regulatory mechanism are still unclear, specifically with regards to the signals that induce lysine acetylation. To better understand this global regulatory mechanism, we profiled changes in lysine acetylation during growth of Escherichia coli on the hexose glucose or the pentose xylose at both high and low sugar concentrations using label-free mass spectrometry. The goal was to see whether lysine acetylation differed during growth on these two different sugars. No significant differences, however, were observed. Rather, the initial sugar concentration was the principal factor governing changes in lysine acetylation, with higher sugar concentrations causing more acetylation. These results suggest that acetylation does not target specific metabolic pathways but rather simply targets accessible lysines, which may or may not alter enzyme activity. They further suggest that lysine acetylation principally results from conditions that favor accumulation of acetyl phosphate, the principal acetate donor in E. coli.IMPORTANCEBacteria alter their metabolism in response to nutrient availability, growth conditions, and environmental stresses. This process is best understood at the level of transcriptional regulation, where many metabolic genes are conditionally expressed in response to diverse cues. However, additional modes of regulations are known to exist. One is lysine acetylation, a post-translational modification known to target many metabolic enzymes. However, unlike transcriptional regulation, little is known about this regulatory mode. We investigated the factors inducing changes in lysine acetylation by comparing growth on glucose and xylose. We found that the specific sugar used for growth did not alter the pattern of acetylation; rather, the principal factor was the amount of sugar, with more sugar yielding more acetylation. These results imply lysine acetylation is a global regulatory mechanism that is not responsive to the specific carbon source per se but rather the accumulation of downstream metabolites.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
David G. Christensen ◽  
Jesse G. Meyer ◽  
Jackson T. Baumgartner ◽  
Alexandria K. D’Souza ◽  
William C. Nelson ◽  
...  

ABSTRACT Posttranslational modifications, such as Nε-lysine acetylation, regulate protein function. Nε-lysine acetylation can occur either nonenzymatically or enzymatically. The nonenzymatic mechanism uses acetyl phosphate (AcP) or acetyl coenzyme A (AcCoA) as acetyl donor to modify an Nε-lysine residue of a protein. The enzymatic mechanism uses Nε-lysine acetyltransferases (KATs) to specifically transfer an acetyl group from AcCoA to Nε-lysine residues on proteins. To date, only one KAT (YfiQ, also known as Pka and PatZ) has been identified in Escherichia coli. Here, we demonstrate the existence of 4 additional E. coli KATs: RimI, YiaC, YjaB, and PhnO. In a genetic background devoid of all known acetylation mechanisms (most notably AcP and YfiQ) and one deacetylase (CobB), overexpression of these putative KATs elicited unique patterns of protein acetylation. We mutated key active site residues and found that most of them eliminated enzymatic acetylation activity. We used mass spectrometry to identify and quantify the specificity of YfiQ and the four novel KATs. Surprisingly, our analysis revealed a high degree of substrate specificity. The overlap between KAT-dependent and AcP-dependent acetylation was extremely limited, supporting the hypothesis that these two acetylation mechanisms play distinct roles in the posttranslational modification of bacterial proteins. We further showed that these novel KATs are conserved across broad swaths of bacterial phylogeny. Finally, we determined that one of the novel KATs (YiaC) and the known KAT (YfiQ) can negatively regulate bacterial migration. Together, these results emphasize distinct and specific nonenzymatic and enzymatic protein acetylation mechanisms present in bacteria. IMPORTANCE Nε-Lysine acetylation is one of the most abundant and important posttranslational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, Nε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed an E. coli strain that lacked both known acetylation mechanisms to identify four new Nε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate nonenzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellum-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial posttranslational modification.


1988 ◽  
Vol 252 (3) ◽  
pp. 825-831 ◽  
Author(s):  
G M Studnicka

The DNA promoter sequence at which gene transcription is initiated in Escherichia coli contains two distinct regions of conserved nucleotides. Coefficients of homology to the -10 region and the -35 region were computed for many different prokaryotic promoters. Linear equations were derived that relate the degree of homology for each promoter region to the two kinetic constants that describe the interaction of RNA polymerase with the promoter site on DNA: the strength KB of binding to form closed complex, and the rate kf of isomerization to form open complex. A graphical plot of -35 versus -10 promoter region homologies for many promoters suggest that certain classes of prokaryotic operons might utilize differential degrees of consensus homology in these two regions to achieve specific control over kf and KB, in addition to modulating overall promoter strength.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


Sign in / Sign up

Export Citation Format

Share Document