scholarly journals CRISPR/Cas9-mediated Bag-1 knockout increased mesenchymal characteristics of MCF-7 cells via Akt hyperactivation-mediated actin cytoskeleton remodeling

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261062
Author(s):  
Pelin Ozfiliz Kilbas ◽  
Nisan Denizce Can ◽  
Tugba Kizilboga ◽  
Fikret Ezberci ◽  
Hamdi Levent Doganay ◽  
...  

Bag-1 protein is a crucial target in cancer to increase the survival and proliferation of cells. The Bag-1 expression is significantly upregulated in primary and metastatic cancer patients compared to normal breast tissue. Overexpression of Bag-1 decreases the efficiency of conventional chemotherapeutic drugs, whereas Bag-1 silencing enhances the apoptotic efficiency of therapeutics, mostly in hormone-positive breast cancer subtypes. In this study, we generated stable Bag-1 knockout (KO) MCF-7 breast cancer cells to monitor stress-mediated cellular alterations in comparison to wild type (wt) and Bag-1 overexpressing (Bag-1 OE) MCF-7 cells. Validation and characterization studies of Bag-1 KO cells showed different cellular morphology with hyperactive Akt signaling, which caused stress-mediated actin reorganization, focal adhesion decrease and led to mesenchymal characteristics in MCF-7 cells. A potent Akt inhibitor, MK-2206, suppressed mesenchymal transition in Bag-1 KO cells. Similar results were obtained following the recovery of Bag-1 isoforms (Bag-1S, M, or L) in Bag-1 KO cells. The findings of this study emphasized that Bag-1 is a mediator of actin-mediated cytoskeleton organization through regulating Akt activation.

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2064
Author(s):  
Eunae Cho ◽  
Nam Kim ◽  
Jun Yun ◽  
Sue Cho ◽  
Hyun Kim ◽  
...  

Efficient catabolic metabolism of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essentially required for cancer cell survival, especially in metastatic cancer progression. Epithelial–mesenchymal transition (EMT) plays an important role in metabolic rewiring of cancer cells as well as in phenotypic conversion and therapeutic resistance. Snail (SNAI1), a well-known inducer of cancer EMT, is critical in providing ATP and NADPH via suppression of several gatekeeper genes involving catabolic metabolism, such as phosphofructokinase 1 (PFK1), fructose-1,6-bisphosphatase 1 (FBP1), and acetyl-CoA carboxylase 2 (ACC2). Paradoxically, PFK1 and FBP1 are counter-opposing and rate-limiting reaction enzymes of glycolysis and gluconeogenesis, respectively. In this study, we report a distinct metabolic circuit of catabolic metabolism in breast cancer subtypes. Interestingly, PFKP and FBP1 are inversely correlated in clinical samples, indicating different metabolic subsets of breast cancer. The luminal types of breast cancer consist of the pentose phosphate pathway (PPP) subset by suppression of PFKP while the basal-like subtype (also known as triple negative breast cancer, TNBC) mainly utilizes glycolysis and mitochondrial fatty acid oxidation (FAO) by loss of FBP1 and ACC2. Notably, PPP remains active via upregulation of TIGAR in the FBP1-loss basal-like subset, indicating the importance of PPP in catabolic cancer metabolism. These results indicate different catabolic metabolic circuits and thus therapeutic strategies in breast cancer subsets.


2021 ◽  
Author(s):  
Ozge ALVUR ◽  
Hakan KUCUKSAYAN ◽  
Yasemin BAYGU ◽  
Nilgun KABAY ◽  
Yasar GOK ◽  
...  

Abstract Breast cancer is a heterogeneous disease which has distinct subtypes and therefore development of novel targeting treatments to fight aganist breast cancer is needed. Although autophagy and apoptosis considered as the major programmed cell death mechanisms are among the current target mechanisms, there are some difficulties in clinical treatment such as the development of drug resistance and cancer recurrence. Therefore it is important that illumination of distinctive mechanisms between cancer types for development novel treatment strategies. In this study, we examined the anti-proliferative effects of the triazole linked galactose substituted dicyano compound (hereafter referred to as the dicyano compound (the DC)) on two different breast cancer cell lines, MDA-MB-231 and MCF-7. We determined that response of each cell lines to the DC was different, since autophagy was induced in MDA-MB-231 and apoptosis was induced in MCF-7. For this reason, we hypothesized that these different responses may be due to the different characteristics of the cells and evaluated effects of aggresiveness degrees of both cell lines on response to the DC. As a result of our analysis, we determined that c-Myc regulation in both cell lines was different upon the DC treatment depending on expression of Twist, an epithelial-to-mesenchymal transition (EMT) mediator. Therefore, we suggest that Twist/c-Myc axis may have a role in different response to the DC-induced cell death pathways in breast cancer subtypes.


2017 ◽  
Vol 25 (4) ◽  
pp. 207-13 ◽  
Author(s):  
Paramita Paramita ◽  
Melva Louisa ◽  
Nafrialdi Nafrialdi

Background: Epithelial mesenchymal transition (EMT) plays a significant role in the development of cancer cell resistance to drugs. Vimentin, a type III intermediate filament protein, is a marker of EMT. Vimentin's over-expression in cancer correlates well with increased tumor growth, change in cell shape and poor prognosis. Endoxifen is an active metabolite of tamoxifen  and has become a new potent agent in the treatment of breast cancer. This is a study that aimed to investigate the effect of endoxifen exposure with or without estradiol on cell viability, cell morphology and EMT progression through the analysis of vimentin mRNA expression after 4-week treatment. Methods: Endoxifen, 100 nM or 1,000 nM, with or without beta-estradiol were given repeatedly to MCF-7 cells. Cells treated with dimethyl sulfoxide (DMSO) 0.001% were used as control. After 2- and 4-week exposure, the cells were counted, analyzed for mRNA vimentin expression, and observed for morphological changes. Results: Compared to control, there were significant decreases in vimentin mRNA expressions in endoxifen and endoxifen+β-estradiol treated cells after 2-weeks, which then significantly increased after 4-week compared with the 2-week exposure. We found no change in morphology of MCF-7 cells. Conclusion: Repeated exposure of endoxifen might induce EMT progression through increased expression of vimentin in MCF-7 breast cancer cell line.


2020 ◽  
Vol 9 ◽  
pp. 1812
Author(s):  
Solmaz Rahmani Barouji ◽  
Arman Shahabi ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

Background: Mummy (Iranian pure shilajit) is a remedy with possessing anti-inflammatory, antioxidant and anticancer activities. This study aimed to examine mummy effects on epithelial-mesenchymal transition (EMT) and invasiveness of MCF-7 and MDA-MB-231 breast cancer (BC) cell lines with underlying its mechanism. Materials and Methods: The dose-dependent inhibitory effect of the mummy on cell proliferation in vitro was determined using the MTT assay.  Flow cytometry and 4’,6-diamidino-2-phenylindole dihydrochloride staining were respectively used for quantitative and qualitative analysis of cellular apoptosis, and gene expression analysis was conducted using real-time PCR. Results: MDA-MB-231 showed more sensitivity than the MCF-7 cell line to the anticancer activity of mummy, while mummy did not exhibit significant cell cytotoxicity against human normal cells (MCF-10A). The gene expression profile demonstrated a significant decrease in TGF-β1, TGF-βR1, TWIST1, NOTCH1, CTNNB1, SRC along with an increase in E-cadherin mRNA levels in mummy treated cells compared to the untreated control group (P≤0.05). Conclusion: Mummy triggers inhibition of EMT and metastasis in breast cancer cells mainly through the downregulation of TGFβ1 activity, and more studies required to find its specific anticancer activity with details. [GMJ.2020;9:e1812]


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Ji ◽  
Yu-Ling Diao ◽  
Yi-Ran Qiu ◽  
Jie Ge ◽  
Xu-Chen Cao ◽  
...  

AbstractBreast cancer is the most common malignant tumor among women worldwide. Although increasing evidence indicates that long noncoding RNAs (lncRNAs) play critical roles during breast tumorigenesis and progression, the involvement of most lncRNAs in breast cancer remains largely unknown. In the current study, we demonstrated that LINC00665 promotes breast cancer cell proliferation, migration, and invasion. Accumulating evidence indicates that many lncRNAs can function as endogenous miRNA sponges by competitively binding common miRNAs. In this study, we demonstrated that LINC00665 functions as a sponge for miR-379-5p, reducing the ability of miR-379-5p to repress LIN28B. LINC00665 promoted breast cancer progression and induced an epithelial–mesenchymal transition-like phenotype via the upregulation of LIN28B expression. Clinically, LINC00665 expression was increased but miR-379-5p expression was decreased in breast cancer tissues compared with that in normal breast tissues in the TCGA database. Furthermore, the expression of LINC00665 was negatively related with miR-379-5p expression. Collectively, our results reveal the LINC00665–miR-379-5p–LIN28B axis and shed light on breast cancer therapy.


2020 ◽  
Vol 19 ◽  
pp. 153303382097967
Author(s):  
Jin Zhang ◽  
Nan Shao ◽  
Xiaoyu Yang ◽  
Chuanbo Xie ◽  
Yawei Shi ◽  
...  

The microRNA-200 (miR-200) family has been reported to be vital for the inhibition of epithelial-to-mesenchymal transition (EMT) in tumor cells. The miR-200 family represents a complex multi-factorial regulatory network which has not been well described in breast cancer. This study aimed to clarify the underlying regulatory association between IL-8 and miR-200 family in the process of EMT in breast cancer cell. In estrogen-receptor (ER) positive breast cancer cell line MCF-7, IL-8 overexpression cells were performed by lentivirus transfection as endogenous regulation with additional exogenous IL-8 stimulation. Transient overexpressions of miR-200 family were performed after endogenous or exogenous IL-8 overexpression in MCF-7 cells. IL-8 knockdown cells were constructed via siRNA and shRNA transfection in triple negative breast cancer cell line MDA-MB-231. N-cadherin, vimentin and ZEB2 were down-regulated and E-cadherin was up-regulated in IL-8 knockdown group compared with control group. On the other hand, N-cadherin, vimentin and ZEB2 were up-regulated and E-cadherin was down-regulated in IL-8 overexpression group compared with control group. This indicated IL-8 promotes EMT in breast cancer cells. Transwell assay showed that IL-8 increased the migration and invasiveness of tumor cells. Furthermore, we performed transient overexpression of miR-200 family after endogenous or exogenous IL-8 overexpression in MCF-7 cells, which showed that the miR-200 family could inhibit EMT induced by IL-8. IL-8 promoted EMT via downregulation of miR-200 family expression in breast cancer cells and increases tumor cell migration and invasion.


2019 ◽  
Vol 8 (2) ◽  
pp. 213 ◽  
Author(s):  
Marco Franchi ◽  
Valentina Masola ◽  
Gloria Bellin ◽  
Maurizio Onisto ◽  
Konstantinos-Athanasios Karamanos ◽  
...  

: Interactions of cancer cells with matrix macromolecules of the surrounding tumor stroma are critical to mediate invasion and metastasis. In this study, we reproduced the collagen mechanical barriers in vitro (i.e., basement membrane, lamina propria under basement membrane, and deeper bundled collagen fibers with different array). These were used in 3D cell cultures to define their effects on morphology and behavior of breast cancer cells with different metastatic potential (MCF-7 and MDA-MB-231) using scanning electron microscope (SEM). We demonstrated that breast cancer cells cultured in 2D and 3D cultures on different collagen substrates show different morphologies: i) a globular/spherical shape, ii) a flattened polygonal shape, and iii) elongated/fusiform and spindle-like shapes. The distribution of different cell shapes changed with the distinct collagen fiber/fibril physical array and size. Dense collagen fibers, parallel to the culture plane, do not allow the invasion of MCF-7 and MDA-MB-231 cells, which, however, show increases of microvilli and microvesicles, respectively. These novel data highlight the regulatory role of different fibrillar collagen arrays in modifying breast cancer cell shape, inducing epithelial-to-mesenchymal transition, changing matrix composition and modulating the production of extracellular vesicles. Further investigation utilizing this in vitro model will help to demonstrate the biological roles of matrix macromolecules in cancer cell invasion in vivo.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Giada Zurlo ◽  
Xijuan Liu ◽  
Mamoru Takada ◽  
Cheng Fan ◽  
Jeremy M. Simon ◽  
...  

AbstractProtein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document