scholarly journals A novel viral strategy for host factor recruitment: The co-opted proteasomal Rpn11 protein interaction hub in cooperation with subverted actin filaments are targeted to deliver cytosolic host factors for viral replication

2021 ◽  
Vol 17 (6) ◽  
pp. e1009680
Author(s):  
Melissa Molho ◽  
Wenwu Lin ◽  
Peter D. Nagy

Positive-strand (+)RNA viruses take advantage of the host cells by subverting a long list of host protein factors and transport vesicles and cellular organelles to build membranous viral replication organelles (VROs) that support robust RNA replication. How RNA viruses accomplish major recruitment tasks of a large number of cellular proteins are intensively studied. In case of tomato bushy stunt virus (TBSV), a single viral replication protein, named p33, carries out most of the recruitment duties. Yet, it is currently unknown how the viral p33 replication protein, which is membrane associated, is capable of the rapid and efficient recruitment of numerous cytosolic host proteins to facilitate the formation of large VROs. In this paper, we show that, TBSV p33 molecules do not recruit each cytosolic host factor one-by-one into VROs, but p33 targets a cytosolic protein interaction hub, namely Rpn11, which interacts with numerous other cytosolic proteins. The highly conserved Rpn11, called POH1 in humans, is the metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates. However, TBSV takes advantage of a noncanonical function of Rpn11 by exploiting Rpn11’s interaction with highly abundant cytosolic proteins and the actin network. We provide supporting evidence that the co-opted Rpn11 in coordination with the subverted actin network is used for delivering cytosolic proteins, such as glycolytic and fermentation enzymes, which are readily subverted into VROs to produce ATP locally in support of VRO formation, viral replicase complex assembly and viral RNA replication. Using several approaches, including knockdown of Rpn11 level, sequestering Rpn11 from the cytosol into the nucleus in plants or temperature-sensitive mutation in Rpn11 in yeast, we show the inhibition of recruitment of glycolytic and fermentation enzymes into VROs. The Rpn11-assisted recruitment of the cytosolic enzymes by p33, however, also requires the combined and coordinated role of the subverted actin network. Accordingly, stabilization of the actin filaments by expression of the Legionella VipA effector in yeast and plant, or via a mutation of ACT1 in yeast resulted in more efficient and rapid recruitment of Rpn11 and the selected glycolytic and fermentation enzymes into VROs. On the contrary, destruction of the actin filaments via expression of the Legionella RavK effector led to poor recruitment of Rpn11 and glycolytic and fermentation enzymes. Finally, we confirmed the key roles of Rpn11 and the actin filaments in situ ATP production within TBSV VROs via using a FRET-based ATP-biosensor. The novel emerging theme is that TBSV targets Rpn11 cytosolic protein interaction hub driven by the p33 replication protein and aided by the subverted actin filaments to deliver several co-opted cytosolic pro-viral factors for robust replication within VROs.

2018 ◽  
Author(s):  
Josep Sardanyés ◽  
Andreu Arderiu ◽  
Santiago F. Elena ◽  
Tomás Alarcón

Evolutionary and dynamical investigations on real viral populations indicate that RNA replication can range between two extremes given by so-called stamping machine replication (SMR) and geometric replication (GR). The impact of asymmetries in replication for single-stranded, (+) sense RNA viruses has been up to now studied with deterministic models. However, viral replication should be better described by including stochasticity, since the cell infection process is typically initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication predict a quasineutral coexistence scenario, with a line of fixed points involving different strands’ equilibrium ratios depending on the initial conditions. Recent research on the quasineutral coexistence in two competing populations reveals that stochastic fluctuations fundamentally alters the mean-field scenario, and one of the two species outcompetes the other one. In this manuscript we study this phenomenon for RNA viral replication modes by means of stochastic simulations and a diffusion approximation. Our results reveal that noise has a strong impact on the amplification of viral RNA, also causing the emergence of noise-induced bistability. We provide analytical criteria for the dominance of (+) sense strands depending on the initial populations on the line of equilibria, which are in agreement with direct stochastic simulation results. The biological implications of this noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA viruses with different modes of replication.


2021 ◽  
Author(s):  
Zhike Feng ◽  
Jun-ichi Inaba ◽  
Peter D. Nagy

Positive-strand RNA viruses induce the biogenesis of unique membranous organelles, called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in relocalization of Rab7 into the large VROs. Similar to depletion of Rab7, deletion of either MON1 or CCZ1 heterodymeric GEFs (guanine nucleotide exchange factors) of Rab7, inhibited TBSV repRNA replication in yeast. This suggests that the activated Rab7 has pro-viral functions. We show that the pro-viral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting Rab7 into VROs results in delivery of several retromer cargos with pro-viral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 (phosphatidylinositol 4-kinase) and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. Importance: Replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, the authors discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has pro-viral functions through facilitating the delivery of co-opted retromer complex, sorting nexin-BAR proteins and lipid enzymes into VROs to create optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Ina Karen Stoeck ◽  
Ji-Young Lee ◽  
Keisuke Tabata ◽  
Inés Romero-Brey ◽  
David Paul ◽  
...  

ABSTRACT Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses.


2006 ◽  
Vol 80 (1) ◽  
pp. 246-251 ◽  
Author(s):  
Antonio Mas ◽  
Isabel Alves-Rodrigues ◽  
Amine Noueiry ◽  
Paul Ahlquist ◽  
Juana Díez

ABSTRACT The genomes of positive-strand RNA [(+)RNA] viruses perform two mutually exclusive functions: they act as mRNAs for the translation of viral proteins and as templates for viral replication. A universal key step in the replication of (+)RNA viruses is the coordinated transition of the RNA genome from the cellular translation machinery to the viral replication complex. While host factors are involved in this step, their nature is largely unknown. By using the ability of the higher eukaryotic (+)RNA virus brome mosaic virus (BMV) to replicate in yeast, we previously showed that the host Lsm1p protein is required for efficient recruitment of BMV RNA from translation to replication. Here we show that in addition to Lsm1p, all tested components of the Lsm1p-7p/Pat1p/Dhh1p decapping activator complex, which functions in deadenylation-dependent decapping of cellular mRNAs, are required for BMV RNA recruitment for RNA replication. In contrast, other proteins of the decapping machinery, such as Edc1p and Edc2p from the deadenylation-dependent decapping pathway and Upf1p, Upf2p, and Upf3p from the deadenylation-independent decapping pathway, had no significant effects. The dependence of BMV RNA recruitment on the Lsm1p-7p/Pat1p/Dhh1p complex was linked exclusively to the 3′ noncoding region of the BMV RNA. Collectively, our results suggest that the Lsm1p-7p/Pat1p/Dhh1p complex that transfers cellular mRNAs from translation to degradation might act as a key regulator in the switch from BMV RNA translation to replication.


2016 ◽  
Vol 12 (2) ◽  
pp. e1005440 ◽  
Author(s):  
Muhammad Shah Nawaz-ul-Rehman ◽  
K. Reddisiva Prasanth ◽  
Kai Xu ◽  
Zsuzsanna Sasvari ◽  
Nikolay Kovalev ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 753
Author(s):  
Sneha Singh ◽  
Onkar B. Sawant ◽  
Shahzad I. Mian ◽  
Ashok Kumar

Several RNA viruses, including SARS-CoV-2, can infect or use the eye as an entry portal to cause ocular or systemic diseases. Povidone-Iodine (PVP-I) is routinely used during ocular surgeries and eye banking as a cost-effective disinfectant due to its broad-spectrum antimicrobial activity, including against viruses. However, whether PVP-I can exert antiviral activities in virus-infected cells remains elusive. In this study, using Zika (ZIKV) and Chikungunya (CHIKV) virus infection of human corneal and retinal pigment epithelial cells, we report antiviral mechanisms of PVP-I. Our data showed that PVP-I, even at the lowest concentration (0.01%), drastically reduced viral replication in corneal and retinal cells without causing cellular toxicity. Antiviral effects of PVP-I against ZIKV and CHIKV were mediated by direct viral inactivation, thus attenuating the ability of the virus to infect host cells. Moreover, one-minute PVP-I exposure of infected ocular cells drastically reduced viral replication and the production of infectious progeny virions. Furthermore, viral-induced (CHIKV) expression of inflammatory genes (TNF-α, IL-6, IL-8, and IL1β) were markedly reduced in PVP-I treated corneal epithelial cells. Together, our results demonstrate potent antiviral effects of PVP-I against ZIKV and CHIKV infection of ocular cells. Thus, a low dose of PVP-I can be used during tissue harvesting for corneal transplants to prevent potential transmission of RNA viruses via infected cells.


2020 ◽  
Vol 133 (18) ◽  
pp. jcs253930

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Julien Pernier is first author on ‘Myosin 1b flattens and prunes branched actin filaments’, published in JCS. Julien conducted the research described in this article while a postdoc in Patricia Bassereau's lab at the Institut Curie, Paris, France. He is now a postdoc in the lab of Christophe Le Clainche at the Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France, investigating the roles of actin-binding proteins in actin network dynamics and organization.


Virology ◽  
2003 ◽  
Vol 312 (2) ◽  
pp. 381-394 ◽  
Author(s):  
Araceli G Castillo ◽  
Dominique Collinet ◽  
Sophia Deret ◽  
Alaa Kashoggi ◽  
Eduardo R Bejarano

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinji Honda ◽  
Ana Eusebio-Cope ◽  
Shuhei Miyashita ◽  
Ayumi Yokoyama ◽  
Annisa Aulia ◽  
...  

Abstract The filamentous fungus Neurospora crassa is used as a model organism for genetics, developmental biology and molecular biology. Remarkably, it is not known to host or to be susceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and other Neurospora species, and show that N. crassa supports the replication of these viruses as well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes N. crassa as a model system for the study of host-virus interactions.


Sign in / Sign up

Export Citation Format

Share Document