scholarly journals Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab

Author(s):  
Jong-Han Lee ◽  
Baik-Soon Cho ◽  
Jung-Sik Kim ◽  
Bum-Gu Cho ◽  
Han-Sik Ki
2021 ◽  
Author(s):  
Madanat Jamil

Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) is a relatively new generation of cementitious material exhibiting exceptional mechanical characteristics. One of the main applications of this new material is strengthening existing bridges and the construction of new Igirders during the rehabilitation process. Previous research on (UHPFRC) beam girders and prestressed girders found the analytical moment capacity to be 76% of the experimental (test) results. A method based on strain compatibility, equilibrium and the stress-strain relationships is developed to determine the flexural capacity of UHPFRC beams with about 90% accuracy between experimental and numerical capacities. A testing program of five beam specimens is conducted at Ryerson University Structural Laboratory to verify the experimental results. Furthermore, the results of the finite element numerical simulation of ABAQUS software using concrete damage plasticity (CDP) constitutive model predict the flexural capacity of the tested UHPFRC beams reasonably well.


2021 ◽  
Author(s):  
Madanat Jamil

Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) is a relatively new generation of cementitious material exhibiting exceptional mechanical characteristics. One of the main applications of this new material is strengthening existing bridges and the construction of new Igirders during the rehabilitation process. Previous research on (UHPFRC) beam girders and prestressed girders found the analytical moment capacity to be 76% of the experimental (test) results. A method based on strain compatibility, equilibrium and the stress-strain relationships is developed to determine the flexural capacity of UHPFRC beams with about 90% accuracy between experimental and numerical capacities. A testing program of five beam specimens is conducted at Ryerson University Structural Laboratory to verify the experimental results. Furthermore, the results of the finite element numerical simulation of ABAQUS software using concrete damage plasticity (CDP) constitutive model predict the flexural capacity of the tested UHPFRC beams reasonably well.


1987 ◽  
Vol 25 (10) ◽  
pp. 15-24
Author(s):  
T. Nishigaki ◽  
T. Usui ◽  
H. Terashita ◽  
S. Ishidoh ◽  
K. Kamiya

2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document