scholarly journals Air Cooling and Dehumidification with a zeolite coated heat exchanger regenerated by Solar thermal energy

Author(s):  
Vincenzo Gentile ◽  
Marco Simonetti ◽  
Fabio Restagno
2019 ◽  
Vol 13 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Mladen Bošnjaković ◽  
Vlado Tadijanović

More recently, there has been an increasing interest in the use of concentrated solar thermal energy for the production of electricity, but also for the use in cogeneration and trigeneration. In this sense, the increasing use of solar thermal energy in urban areas is expected, and its impact on the environment is inducing an increasing interest. The paper analyses the impact of concentrated solar power technology (linear Fresnel, parabolic trough, parabolic dish, and central tower) on the environment in terms of water consumption, land use, wasted heat, emissions of gases, emissions of pollutants that include the leakage of heat transfer fluid through pipelines and tanks, impact on flora and fauna, impact of noise and visual impact. The impact on the environment is different for different concentrated solar power technologies and depends on whether thermal energy storage is included in the plant. Water is mainly used for cooling the system, but also for cleaning the surface of the mirror. To reduce water consumption, other cooling technologies (e.g. air cooling) are being developed. The available data from the literature show large variances depending on the size of the plant, geographic location and applied technology.


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 120096
Author(s):  
Hongjuan Hou ◽  
Qiongjie Du ◽  
Chang Huang ◽  
Le Zhang ◽  
Eric Hu

Sign in / Sign up

Export Citation Format

Share Document