scholarly journals Design and analysis of energy harvester using MEMS based Cantilever with variable perforations

2017 ◽  
Vol 7 (1.5) ◽  
pp. 141
Author(s):  
G.R.K Prasad ◽  
N. Siddaiah ◽  
P. Sanjeev ◽  
A. Raviteja ◽  
P. Karunya ◽  
...  

This paper represents the design and analysis of energy harvester using MEMS based cantilever with PMN-PT single crystal properties which has excellent piezoelectric properties while compared to other piezoelectric materials like PZT thick film. The design is analysed using COMSOL multi physics which is used for many MEMS operations and also problems related to physics with many mathematical calculations with better efficiency and ease to design. We designed a cantilever with PMN-PT properties which has good coupling coefficient and increased perforations in number in form of square and circular. We tested the displacement sensitivity i.e., the variation of displacement at different eigen frequencies with increase in number of perforations. We observe output voltage by designing electromechanical analysis and variation in output capacitance of  2 .41 x 10-22 Farads is observed.

2013 ◽  
Vol 284-287 ◽  
pp. 3-7
Author(s):  
Chun Huy Wang

PbZrO3-PbTiO3 (PZT)-based ceramics are playing a dominant role in piezoelectric materials, their evaporation of harmful lead oxide during the sintering process causes a crucial environment problem. It is necessary to search for lead-free piezoelectric materials that have such excellent properties as those found in the PZT-based ceramics. Therefore (Na0.5K0.5)NbO3-based solid solutions were studied to improve piezoelectric properties. In the present study, various quantities of Bi2O3 were added into 0.98(Na0.5K0.5)NbO3-0.02Ba(Sn0.02Ti0.98)O3 (0.98NKN-0.02BST) ceramics. It was found that 0.98NKN-0.02BST with the addition of 0~4.0 wt.% Bi2O3 exhibit relatively good piezoelectric properties. For 0.98NKN-0.02BST ceramic with the addition of 1.0 wt.% Bi2O3, the electromechanical coupling coefficients of the planar mode kp and the thickness mode kt reach 0.21 and 0.46, respectively, at the sintering of 1100oC for 3 h. The ratio of thickness coupling coefficient to planar coupling coefficient is 2.2. It is obvious that 0.98NKN-0.02BST solid solution ceramic by adding low quantities of Bi2O3 is one of the promising lead-free ceramics for high frequency electromechanical transducer applications.


2019 ◽  
Vol 8 (2) ◽  
pp. 443-449 ◽  
Author(s):  
Norfaizul Izwan Nordin ◽  
Rosminazuin Ab Rahim ◽  
Aliza Aini Md Ralib

This aim of this paper is to study the potential of Polyvinylidene Fluoride (PVDF) polymeric piezoelectric film as an energy harvester for daily application use. PVDF offers several advantages over other piezoelectric materials such as high chemical strength and stability, high piezoelectric properties and biocompatible. Several investigations were carried out in this project which comprises of simulation, functionality test and application test. For functionality test, the highest voltage produced for a single film PVDF is 0.368 V which charges up a capacitor to 0.219 V in one minute. The highest voltage produced by multiple PVDF films is 1.238 V by stacking 10 films of PVDF in parallel which charges up to 0.688 V in one minute. For application test, 5 pieces of PVDF films were attached to a glove to generate some voltage during fingers bending activity. The highest output voltage recorded is 0.184 V which stores 0.101 V in a capacitor after 200 times of hand bending and releasing. As a conclusion, PVDF has a good potential as an alternative energy for daily application use. Combination of PVDF energy harvester system with proper power optimization circuit will open up rooms of research opportunities in energy harvester system with promising prospect in self-powered wireless electronics devices for Internet of Things application.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


2016 ◽  
Vol 7 ◽  
pp. 141-145 ◽  
Author(s):  
Mansoor Ahmad ◽  
Janice Kiely ◽  
Richard Luxton ◽  
Musarrat Jabeen ◽  
Muhammad Khalid

2014 ◽  
Vol 672-674 ◽  
pp. 402-406
Author(s):  
Bing Jiang ◽  
Shuai Yuan ◽  
Xiao Hui Xu ◽  
Mao Sheng Ding ◽  
Ye Yuan ◽  
...  

In recent years, piezoelectric energy harvester which can replace the traditional battery supply has become a hot topic in global research field of microelectronic devices. Characteristics of a trapezoidal-loop piezoelectric energy harvester (TLPEH) were analyzed through finite-element analysis. The output voltage density is 4.251V/cm2 when 0.1N force is applied to the free end of ten-arm energy harvester. Comparisons of the resonant frequencies and output voltages were made. The first order resonant frequency could reach 15Hz by increasing the number of arms. Meanwhile, the output voltage is improved greatly when excited at first-order resonant frequencies. The trapezoidal-loop structure of TLPEH could enhance frequency response, which means scavenging energy more efficiently in vibration environment. The TLPEH mentioned here might be useful for the future structure design of piezoelectric energy harvester with low resonance frequency.


2012 ◽  
Vol 24 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ling Bu ◽  
Xiaoming Wu ◽  
Xiaohong Wang ◽  
Litian Liu

This article presents the modeling, fabrication, and testing of liquid encapsulated energy harvester using polyvinylidene fluoride electrets. Unlike harvesters reported in previous literature, this liquid encapsulated energy harvester uses flowing liquid rather than conventional resonating structures to induce variable capacitance and is more suitable for low-frequency applications. Prototypes injected with three types of liquid ( N-methyl-2-pyrrolidone, N, N-dimethylformamide, and glycerin) are tested in horizontal vibration and rotary motion mode, respectively. The results show that N, N-dimethylformamide–injected prototypes display the most desirable performance in horizontal vibration testing at 1–10 Hz due to high relative permittivity and low viscosity, with maximum output voltage of 2.32 V and power of 0.18 µW at 10 Hz. Glycerin-injected prototypes perform best at 0.1–1 Hz rotation due to effective movement and highest permittivity, with maximum output voltage of 11.46 V and power of 2.19 µW at 1 Hz.


2013 ◽  
Vol 475-476 ◽  
pp. 1624-1628
Author(s):  
Hasnizah Aris ◽  
David Fitrio ◽  
Jack Singh

The development and utilization of different structural materials, optimization of the cantilever geometry and power harvesting circuit are the most commonly methods used to increase the power density of MEMS energy harvester. This paper discusses the cantilever geometry optimization process of low power and low frequency of bimorph MEMS energy harvester. Three piezoelectric materials, ZnO, AlN and PZT are deposited on top and bottom of the cantilever Si substrate. This study focuses on the optimization of the cantilevers length, width, substrate thickness and PZe thickness in order to achieve lower than 600 Hz of resonant frequency. The harvested power for this work is in the range of 0.02 ~ 194.49 nW.


2021 ◽  
pp. 002199832110588
Author(s):  
Fidéle Léopold Hanse Wampo ◽  
Richard Ntenga ◽  
Joseph Yves Effa ◽  
Yuri Lapusta ◽  
Guy Edgar Ntamack ◽  
...  

Although piezocomposite (PC) materials have increasingly attracted researchers, there is still a need to properly and easily derive their properties. We develop a generalized homogenization model (GHM) that accounts for Smith and Cha approaches to evaluate the equivalent characteristics of piezocomposites. This method could be applied to all connectivities patterns, but restricted herein to 2-2 and 1-3 piezocomposites for comparison with Smith (1-3) and Cha (2-2) analytical results. In the proposed GHM is a parameter θ, is changed for various connectivities. The 1-3 and 2-2 PZT-7A/Araldite D (PCs) data are used and equivalent characteristics of these Pcs are determined as function of volume fraction of PZT-7A piezoelectric. Results show that the electromechanical coefficients are well fitted by Voigt and Reuss models. Results obtained for some parameters show that the proposed GHM is consistent with the analytical existing models used for the 1-3 and 2-2 connectivities and is in line with measured values from Chan and Unsworth (1989). Based on the GHM 2-2 configuration results of piezocomposite materials, the electroacoustic responses of transducers having some of these properties are simulated using the KLM model. A performance trade-off was chosen, resulting in an improved thickness coupling coefficient and a lowered acoustical impedance, and a similar approach as that on a pure PZT-7A.


2017 ◽  
Vol 6 (4) ◽  
pp. 5 ◽  
Author(s):  
Nan Chen ◽  
Vishwas Bedekar

We demonstrate the detailed analysis for conversion of piezoelectric properties into compliance matrix and simulate a series bimorph configuration for vibration based energy generation. Commercially available software COMSOL Multiphysics was used to apply boundary conditions for optimization of geometric parameters such as length, width and thickness of piezoelectric layer to study voltage and power characteristics of the harvester. The resulting energy harvester was found to generate 1.73 mW at 53.4 Hz across a 3MW load with an energy density of 13.08mJ/cm3. We also investigated feasibility of this model by comparing it with existing experimental data of known piezoelectric ceramic compositions and found good correlation between the two.


2017 ◽  
Vol 24 (19) ◽  
pp. 4484-4491 ◽  
Author(s):  
R Tikani ◽  
L Torfenezhad ◽  
M Mousavi ◽  
S Ziaei-Rad

Nowadays, environmental energy resources, especially mechanical vibrations, have attracted the attention of researchers to provide energy for low-power electronic circuits. A common method for environmental mechanical energy harvesting involves using piezoelectric materials. In this study, a spiral multimode piezoelectric energy harvester was designed and fabricated. To achieve wide bandwidth in low frequencies (below 15 Hz), the first three resonance frequencies of the beam were designed to be close to each other. To do this, the five lengths of the substrate layer were optimized by the Taguchi method, using an L27 orthogonal array. Each experiment of the Taguchi method was then simulated in ANSYS software. Next, the optimum level of each design variable was obtained. A test rig was then constructed based on the optimum design values and some experimental investigations were conducted. A good correlation was observed between measured and the finite element results.


Sign in / Sign up

Export Citation Format

Share Document