scholarly journals POTENCIAL ANTIBACTERIANO DO ÓLEO ESSENCIAL DE LIPPIA ALBA MILL. ASSOCIADO A LUZES DE LED

2021 ◽  
Vol 33 (2) ◽  
pp. 188
Author(s):  
Vitoria Ruana Sales Santos ◽  
Dárcio Luiz de Sousa Júnior ◽  
Jailson De Castro Freitas ◽  
Pedro Everson Alexandre de Aquino ◽  
Maria Karollyna Do Nascimento Silva Leandro ◽  
...  

Lippia alba Mill., também conhecida como erva cidreira, é um subarbusto aromático que ocorre em todo território brasileiro. Seu óleo essencial possui muitas atividades, mas ainda são escassos estudos do seu uso associado à fototerapia. O objetivo desse estudo foi avaliar a atividade antibacteriana do óleo essencial de Lippia alba (OEL) associado a luzes de LED (Light Emitting Diode) azul, vermelha e amarela contra cepas de Staphylococcus aureus e Escherichia coli. O óleo foi extraído pelo método de hidrodestilação. A atividadeantibacteriana e moduladora foi avaliada pelo método de contato gasoso utilizando o óleo, luzes de LED e antibióticos, os quais foram realizados em triplicata. O OEL possui um potencial antibacteriano frente todas as cepas testadas tendo um resultado mais expressivo na cepa multirresistente de E. coli quando associado a luzes de LED. Na modulação da resistência bacteriana, tanto nas combinações do óleo + antibiótico + luzes de LED como óleo + antibióticos, houve sinergismo frente às linhagens multirresistentes de ambas as cepas testadas. Os resultados obtidos no presente estudo mostraram que o óleo essencial de Lippia alba associado às luzes de LED possui efeito antibacteriano e modulador pelo método de contato gasoso. Estes dados obtidos poderão colaborar com pesquisas futuras que visem o desenvolvimento de novas estratégias terapêuticas no combate de microrganismos resistentes.

2017 ◽  
Vol 13 (4-2) ◽  
pp. 430-437 ◽  
Author(s):  
Sameen Ahmed Malik ◽  
Tan Tian Swee ◽  
Nik Ahmad Nizam Nik Malek ◽  
Mohammed Rafiq Abdul Kadir ◽  
Takahiro Emoto ◽  
...  

UV light has become an integral part of human life especially in performing wide range of disinfection. Most of the research on UVLEDs is limited to UVC region because of comparison with mercury based UV lamps which work typically at 254 nm. Limited research is found on the use of UVA-LEDs for inactivation of microorganisms in healthcare. In this study a standard 3 mm LED has been compared with 385 nm UVA-LED for inactivation of Escherichia coli.  E. coli strains were swabbed on control, LED and UVA-LED petri dishes using cotton bud. The LED and UVA-LED samples were exposed to standard LED light and UVA light respectively for 1 h. The analysis of bacteria by determining Colony forming units (CFU) and log inactivation were carried out to calculate the number of colonies present in each sample. Result showed negligible to none disinfection properties in standard LED light. LED samples had  CFU/ml colonies compared to control which is  CFU/ml. UVA-LED samples achieved maximum inactivation and only had  CFU/ml. Log inactivation results showed that LED samples observed 0.1-log inactivation whereas the UVA-LED had significant inactivation of 3.8-log inactivation corresponding to approximately 99.99 % E. coli reduction. The results demonstrate that UVA-LED at 385 nm is capable of efficiently providing inactivation of bacteria E. coli. 


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1834
Author(s):  
Chae-Lim Lee ◽  
Geun-Hyang Kim ◽  
Ki-Sun Yoon

Washing soft fresh produce such as strawberries, baby leaves, and sliced onions with sanitizing agents is challenging due to their fragile texture. Thus, treatments like aerosolization using slightly acidic electrolyzed water (SAEW) and ultraviolet C light-emitting diode (UVC LED) irradiation may be good alternatives. In the present study, the reduction effects of a combined treatment of aerosolization using SAEW and UVC LED irradiation on enterohemorrhagic Escherichia coli (EHEC) and Staphylococcus aureus attached to strawberries, baby leaves, and sliced onions were investigated. The behaviours of EHEC and S. aureus, moisture loss, colour measurement, and visual appearance were also analyzed at 10 and 15 °C for 7 days. The reduction effect of the combined treatment with 100 SAEW and UVC LED was higher (0.53–0.92 log CFU g−1) than a single aerosolization treatment (0.11–0.41 log CFU g−1), regardless of samples or pathogens. A greater effect on EHEC and S. aureus reduction was observed in strawberries (0.74 and 0.92 log CFU g−1) than in baby leaves (0.62 and 0.53 log CFU g−1) and sliced onions (0.55 and 0.62 log CFU g−1). The combined treatment further reduced the EHEC and S. aureus populations in strawberries during 7 days of storage at 10 and 15 °C. However, the EHEC and S. aureus populations were maintained in baby leaves and sliced onions at 10 °C for 7 days. Additionally, the greatest effect on the maintenance of colour and appearance was obtained in the combined treatment. Since the combined treatment reduces EHEC and S. aureus populations and preserves visual quality, it could be expected to extend the shelf life of soft fresh produce at the retailer stage of the supply chain.


2018 ◽  
Vol 7 (9) ◽  
pp. 278 ◽  
Author(s):  
Shiuh-Tsuen Huang ◽  
Chun-Yi Wu ◽  
Nan‐Yao Lee ◽  
Chien-Wei Cheng ◽  
Meei-Ju Yang ◽  
...  

The adaptability of bacterial resistance to antibiotics contributes to its high efficiency during evolution. Tetracycline (TC) is a broad-spectrum antimicrobial agent. Chromatographic analyses and mass spectrometry were used to study the effects of the light illumination of a 462 nm light-emitting diode (LED) on the conformational changes of TC in a phosphate buffer solution (PBS, pH 7.8). Especially, the inactivation of superoxide anion radicals (O2•−) and Escherichia coli (E. coli), including that of a multidrug-resistant E. coli (MDR E. coli), were investigated during the photolysis of TC. A photolysis product of TC (PPT) was generated in an alkaline solution after the illumination of a blue light. The mass spectra of PPT had characteristic ion signals in m/z 459, 445, and 249.1 Da. The PPT has the molecular formula of C22H22N2O9, and the exact mass is 458.44 g/mol. The inactivation of MDR E. coli is not significant with TC treatment. The drug-resistant ability of MDR E. coli has a less significant effect on PPT, and the changed conformation of TC retained the inactivation ability of MDR E. coli upon blue light photoreaction. With TC, illuminated by a blue light in a pH 7.8 PBS, O2•− was generated from TC photolysis, which enhanced the inactivation of E. coli and MDR E. coli. A 96.6% inactivation rate of MDR E. coli was reached with TC under 2.0 mW/cm2 blue light illumination at 25 ± 3 °C for 120 min, and the effects of the TC-treated photoreaction on MDR E. coli viability repressed the growth of MDR E. coli by 4 to 5 logs. The present study of the blue light photoreaction of TC offers a new approach to the inactivation of MDR E. coli.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 679 ◽  
Author(s):  
Amritha Prasad ◽  
Michael Gänzle ◽  
M. S. Roopesh

High intensity pulsed light emitting diode (LED) treatment is a novel approach to inactivate foodborne pathogens. The objective of this study was to evaluate the antibacterial potential of high intensity 365 (UV-A) and 395 nm (NUV-Vis) LED treatments against Escherichia coli and Salmonella enterica at high and low water activity (aw) conditions, and to understand the influence of different process parameters on their antibacterial efficacy. Bacteria at high (in phosphate buffer saline, PBS) and low aw (aw = 0.75) conditions were treated with both the LEDs with specific doses at a fixed distance from the LEDs. The 365 nm LED showed more effectiveness in reducing the dried bacteria compared to 395 nm LED. The dry E. coli showed more resistance to LED treatments compared to Salmonella. The 365 and 395 nm LED treatments with ~658 J/cm2 dose resulted in reductions of 0.79 and 1.76 log CFU/g of Salmonella, respectively, on 0.75 aw pet foods. The LED treatments increased the surface temperature, resulting in water loss in the treated samples. This study showed that the dose, duration of light exposure, bacterial strain, and aw played a major role in the antibacterial efficacy of the 365 and 395 nm LEDs.


2019 ◽  
Author(s):  
Maria Ulfa ◽  
Momoyo Azuma ◽  
Masami Sato ◽  
Takaaki Shimohata ◽  
Shiho Fukushima ◽  
...  

Abstract Background: The prevalence of extended spectrum β-lactamase (ESBL)-producing Escherichia coli is increasing rapidlyand spreading worldwide, particularly in Asia compared to other regions. In the last 10 years, in our hospital, in particular, there has been <30% increase. To prevent the spread of ESBL in hospitals and in the community, the ultraviolet (UV) A-light-emitting diode (LED) irradiation device was used to inactivate ESBL- E. coli in human livestock and the environment . Methods: ESBL- E. coli and E. coli bacterial samples were collected from patients at Tokushima University Hospital (Tokushima City, Japan). The UVA-LED irradiation system had 365 nm single wavelength, and the current of the circuit was set to 0.23 or 0.50 A consistently. Results: Results demonstrated that UVA-LED was useful for the inactivation of ESBL- E. coli and E. coli . The minimum energy dosage required to inactivate ESBL- E. coli and E. coli was 40.75 J/cm 2 (45 min) in the first type of UVA-LED and 38.85 J/cm 2 (5 min) in the second type. There were no significant differences between ESBL- E. coli and E. coli . The inactivation of ESBL- E. coli was dependent on energy. Conclusions: These findings suggest that UVA-LED with 365 nm single wavelength could be useful for surface decontamination in healthcare facilities.


2017 ◽  
Vol 80 (7) ◽  
pp. 1198-1203 ◽  
Author(s):  
Suguru Murashita ◽  
Shuso Kawamura ◽  
Shigenobu Koseki

ABSTRACT Ice, widely used in the food industry, is a potential cause of food poisoning resulting from microbial contamination. Direct microbial inactivation of ice is necessary because microorganisms may have been present in the source water used to make it and/or may have been introduced due to poor hygiene during production or handling of the ice. Nonthermal and nondestructive microbial inactivation technologies are needed to control microorganisms in ice. We evaluated the applicability of a UVC light-emitting diode (UVC-LED) for microbial inactivation in ice. The effects of UV intensity and UV dose of the UVC-LED on Escherichia coli ATCC 25922 and a comparison of UVC-LED with a conventional UV lamp for effective bacterial inactivation in distilled water and ice cubes were investigated to evaluate the performance of the UVC-LED. Finally, we assessed the effects of the UVC-LED on pathogens such as E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in ice cubes. The results indicated that UVC-LED effectiveness depended on the UV dose at all UV intensity conditions (0.084, 0.025, 0.013, 0.007, and 0.005 mW/cm2) in ice and that UVC-LED could more efficiently inactivate E. coli ATCC 25922 in distilled water and ice than the UV lamp. At a UV dose of 2.64 mJ/cm2, E. coli in distilled water was decreased by 0.90 log CFU/mL (UV lamp) and by more than 7.0 log CFU/mL (UVC-LED). At 15.2 mJ/cm2, E. coli in ice was decreased by 3.18 log CFU/mL (UV lamp) and by 4.45 CFU/mL (UVC-LED). Furthermore, UVC-LED irradiation reduced the viable number of pathogens by 6 to 7 log cycles at 160 mJ/cm2, although the bactericidal effect was somewhat dependent on the type of bacteria. L. monocytogenes in ice was relatively more sensitive to UVC irradiation than were E. coli O157:H7 and Salmonella Typhimurium. These results demonstrate that UVC-LED irradiation could contribute to the safety of ice in the food industry.


2018 ◽  
Vol 22 (12) ◽  
pp. 1099-1105 ◽  
Author(s):  
Ismail Ozturk ◽  
Ayça Tunçel ◽  
Mine Ince ◽  
Kasim Ocakoglu ◽  
Mine Hoşgör-Limoncu ◽  
...  

Nowadays the problem of antimicrobial resistance is the most important cause of morbidity and mortality in the treatment of infectious diseases worldwide. Treatment options for antimicrobial-resistant microorganisms are quite limited. Therefore, alternative treatment strategies are needed to control infectious diseases. Antimicrobial photodynamic therapy (aPDT) is one of the new treatment modalities proposed for a wide variety of infections. In the basic principle of aPDT, photosensitizers (PS) produce free radicals by irradiating them with harmless light at the appropriate wavelength, and this causes microorganism cell cytotoxicity. In this study, light emitting diodes (LED) (630–700 nm, 17.4 mW/cm[Formula: see text] were used on Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) at different light doses under the minimum inhibitory concentration (MIC) values of SubPc and SubPc-integrated TiO2 nanoparticles (SubPc-TiO[Formula: see text] concentration. Both compounds show good phototoxicity toward S. aureus when high light doses (16, 24[Formula: see text]J/cm[Formula: see text] were applied. In addition, SubPc-TiO2 were found to be more effective than SubPc in aPDT of S. aureus. In E. coli, the success of aPDT has been shown to be dependent on the increased light dose (20, 30[Formula: see text]J/cm[Formula: see text] for both compounds. As a result, the aPDT activity of SubPc-TiO2 is more effective than SubPc in increasing light doses.


2018 ◽  
Vol 41 (4) ◽  
pp. 353-363
Author(s):  
Alberto J. Valencia-Botin ◽  
Melesio Gutiérrez-Lomelí ◽  
Juan A. Morales-Del-Río ◽  
Pedro J. Guerrero-Medina ◽  
Miguel A. Robles-García ◽  
...  

Actualmente existe la necesidad de hacer frente al problema de la resistencia a los antibióticos y al uso indiscriminado de fungicidas químicos en la agricultura. El objetivo de este trabajo fue evaluar el efecto inhibitorio de extractos acuosos, metanólicos, acetónicos y hexánicos de hoja y tallo de Vitex mollis Kunth (Lamiaceae) contra diferentes bacterias (Escherichia coli, Micrococcus luteus, Salmonella enterica y Staphylococcus aureus) y especies del hongo Fusarium (F. verticillioides, F. oxysporum, F. tapsinum y F. oxysporum f.sp. lycopersici) de importancia en la salud y en la agricultura, así como determinar su composición química general. Se determinaron las concentraciones inhibitorias mínimas (CIM) de todos los extractos por la técnica de microdilución, excepto del hexánico, que no presentó inhibición en las bacterias estudiadas. S. enterica fue la bacteria que mostró mayor sensibilidad al extracto metanólico de tallo (CIM = 28 μg mL-1), le siguieron M. luteus (CIM = 32 μg mL-1), S. aureus (CIM = 75 μg mL-1) y E. coli (CIM = 80 μg mL- 1). Los extractos metanólicos y acuosos de tallo presentaron mayor porcentaje de inhibición contra los diferentes tipos de Fusarium evaluados por el método de dilución en agar. Los extractos de V. mollis inhibieron a F. verticillioides entre 62 y 91 % con 120 μg mL-1 de extracto. El orden de las especies de hongos inhibidas por los extractos fue: F. verticillioides > F. oxysporum > F. tapsinum > F. oxysporum f.sp. lycopersici. La composición química de las especies se determinó mediante pruebas para fenoles, taninos, flavonoides, triterpenos, alcaloides, cumarinas y saponinas. Ninguno de los extractos presentó alcaloides y saponinas. Los fenoles (37.1 mg EAG/g muestra seca) y flavonoides (26.8 mg EQ/g muestra seca) fueron los compuestos mayoritarios en los extractos metanólicos y acuosos. En conclusión, se requieren cantidades muy pequeñas de extracto para la inhibición de bacterias y de Fusarium; por lo tanto, V. mollis puede ser considerada una fuente de metabolitos para este fin y en la agricultura como control alternativo dentro de un manejo integrado de enfermedades.


2020 ◽  
Vol 24 (19) ◽  
pp. 2272-2282
Author(s):  
Vu Ngoc Toan ◽  
Nguyen Minh Tri ◽  
Nguyen Dinh Thanh

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


Sign in / Sign up

Export Citation Format

Share Document