HIGH-SPEED INDUSTRIAL REAL-TIME NETWORK OF CYBERPHYSICAL SYSTEMS

Author(s):  
A. A. Zelensky

The construction of a high-speed industrial real-time network based on FPGA (Field-Programmable Gate Array) for the control of machines and industrial robots is considered. A brief comparative analysis of the performance of the implemented Ethernet-based Protocol with industrial protocols of other leading manufacturers is made. The aim of the research and development of its own industrial automation Protocol was to reduce the dependence on third-party real-time protocols based on Ethernet for controlling robots, machines and technological equipment. In the course of the study, the requirements for the network of the motion control system of industrial equipment were analyzed. In order to synchronize different network nodes and provide short exchange cycle time, an industrial managed switch was developed, as well as a specialized hardware controller for processing Ethernet packets for end devices, presented as a IP-core. A key feature of the developed industrial network is that the data transmission in it is completely determined, and the exchange cycle time for each of the network devices can be configured individually. High efficiency and performance of implemented network devices became possible due to the use of hardware solutions based on FPGAs. All solutions described in the article as part of a modular digital system have been successfully tested in the control of machines and industrial robot. The results of field tests show that the use of FPGAs and soft processors with specialized peripheral IP-blocks can significantly reduce the tact of managing industrial equipment through the use of hardware computing structures, which indicates the promise of the proposed approach for solving industrial automation tasks.

2011 ◽  
Vol 464 ◽  
pp. 272-278 ◽  
Author(s):  
Wei You ◽  
Min Xiu Kong ◽  
Li Ning Sun ◽  
Chan Chan Guo

In this paper, aiming at solving the problems of dynamic coupling effects and flexibility of joints and links, a kind of control system specialized for high payload industrial robots is proposed . After the comparisons between the control systems in all kinds of robots and numerical machines, industrial PC with TwinCAT real-time system is chosen as the motion control unit, EtherCAT is used for command transmitting. The whole control system has a decoupled and centralized control structure. The proposed control system is applied in control of a kind of high payload material handling robots with complex compound control algorithms. The final results shows that the control commands can be easily calculated and transmitted in one sample unit. The proposed control scheme is meaningful to real engineering application.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840079
Author(s):  
Wensheng Huang ◽  
Hongli Xu

The application of machine vision to industrial robots is a hot topic in robot research nowadays. A welding robot with machine vision had been developed, which is convenient and flexible to reach the welding point with six degrees-of-freedom (DOF) manipulator, while the singularity of its movement trail is prevented, and the stability of the mechanism had been fully guaranteed. As the precise industry camera can capture the optical feature of the workpiece to reflect in the camera’s CCD lens, the workpiece is identified and located through a visual pattern recognition algorithm based on gray scale processing, on the gradient direction of edge pixel or on geometric element so that high-speed visual acquisition, image preprocessing, feature extraction and recognition, target location are integrated and hardware processing power is improved. Another task is to plan control strategy of control system, and the upper computer software is programmed in order that multi-axis motion trajectory is optimized and servo control is accomplished. Finally, prototype was developed and validation experiments show that the welding robot has high stability, high efficiency, high precision, even if welding joints are random and workpiece contour is irregular.


2020 ◽  
Vol 157 ◽  
pp. 04027 ◽  
Author(s):  
Sergey Ageev ◽  
Vladimir Karetnikov ◽  
Evgeny Ol’khovik ◽  
Andrey Privalov

In the paper, an adaptive hybrid heuristic (behavioral) method for detecting small traffic anomalies in high-speed multiservice communication networks, which operates in real time, is proposed and investigated. The relevance of this study is determined by the fact that network security management processes in high-speed multiservice communication networks need to be implemented in a mode close to real-time mode, as well as identifying possible network security threats in the early stages of the implementation of possible network attacks. The proposed method and algorithm belong to the class of adaptive methods and algorithms with preliminary training. The average relative error in estimating the evaluated traffic parameters does not exceed 10%, which is sufficient for the implementation of operational network management tasks. Anomalies of the expectation of traffic intensity and its dispersion are identified if their valuesexceed the normal values by 15% or more, which makes it possible to detect possible network attacks in the early phases of their implementation, for example, at the stage of scanning ports and interfaces of the attacked system. The procedure for detecting anomalous traffic behavior is implemented based on the Mamdani’s method of hierarchical fuzzy logical inference. A study of the proposed method for detecting anomalous behavior of network traffic showed its high efficiency.


Author(s):  
Mohamed Slamani ◽  
Albert Nubiola ◽  
Ilian A. Bonev

Two important aspects of the performance of a servo system, tracking errors and contour errors, significantly affect the accuracy of industrial robots under high-speed motion. Careful tuning of the control parameters in a servo system is essential, if the risk of severe structural vibration and a large contouring error is to be avoided. In this paper, we present an overview of a method to diagnose contouring errors caused by the servo control system of an ABB IRB 1600 industrial robot by measuring the robot’s motion accuracy in a Cartesian circular shape using a double ballbar (DBB) measurement instrument. Tests were carried out at different TCP (tool centre-point) speed and trajectory radii to investigate the main sources of errors that affect circular contouring accuracy. Results show that radius size errors and out-of-roundness are significant. A simple experimental model based on statistical tests was also developed to represent and predict the radius size error. The model was evaluated by comparing its prediction capability in several experiments. An excellent error prediction capability was observed.


2014 ◽  
Vol 635-637 ◽  
pp. 1128-1131
Author(s):  
Xing Hong Kuang ◽  
Zhe Yi Yao ◽  
Shi Ming Wang

With the development of economy, the global satellite navigation system with its high speed, high efficiency, high precision measurement and positioning a series of significant advantages, favored by various industry data collection and monitoring of personnel resources , the advent of satellite navigation systems to solve a large-scale, rapid and high-precision global positioning problem. Its scope of application has penetrated to the various departments of the national economic and social development in various fields and industries. To be able to monitor the progressive realization of automated data collection and transmission, the urgent need to adopt advanced positioning technology to build real-time location monitoring system PC Based Development Background navigation receiver , an overview of the inter Beidou BD-126 systems and microcontrollers can be serially the basic principle of mouth communication describes the communication protocol Compass BD-126 positioning module and the next crew between the microcontroller to control development in the use of PC positioning system for a detailed description , including the BDS Beidou satellite navigation module and microcontroller serial data communications, microprocessor controlled real-time data display , and so on


2021 ◽  
Author(s):  
Rishi Malhan ◽  
Rex Jomy Joseph ◽  
Prahar M. Bhatt ◽  
Brual Shah ◽  
Satyandra K. Gupta

Abstract 3D reconstruction technology is used in a wide variety of applications. Currently, automatically creating accurate pointclouds for large parts requires expensive hardware. We are interested in using low-cost depth cameras mounted on commonly available industrial robots to create accurate pointclouds for large parts automatically. Manufacturing applications require fast cycle times. Therefore, we are interested in speeding up the 3D reconstruction process. We present algorithmic advances in 3D reconstruction that achieve a sub-millimeter accuracy using a low-cost depth camera. Our system can be used to determine a pointcloud model of large and complex parts. Advances in camera calibration, cycle time reduction for pointcloud capturing, and uncertainty estimation are made in this work. We continuously capture point-clouds at an optimal camera location with respect to part distance during robot motion execution. The redundancy in pointclouds achieved by the moving camera significantly reduces errors in measurements without increasing cycle time. Our system produces sub-millimeter accuracy.


2011 ◽  
Vol 130-134 ◽  
pp. 3938-3941
Author(s):  
Yong Gang Luo

In order to realize high-speed and real-time communications between canbus and usb bus, a can/usb embedded adapter is designed in this paper. The hardware of the system consists mainly of AT89S51 as the local processor and PDIUSBD12 as the USB interface device, the sja1000 as the canbus interface device. Data communication is operated by the firmware and drivers. Adapter completely satisfies the needs of the CAN bus with its highest speed of 1Mps and it will be widely used in future for its high efficiency and low cost.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hubert Gattringer ◽  
Roland Riepl ◽  
Matthias Neubauer

Today’s standard robotic systems often do not meet the industry’s demands for accurate high-speed robotic applications. Any machine, be it an existing or a new one, should be pushed to its limits to provide “optimal” efficiency. However, due to the high complexity of modern applications, a one-step overall optimization is not possible. Therefore, this contribution introduces a step-by-step sequence of multiple nonlinear optimizations. Included are optimal configurations for geometric calibration, best-exciting trajectories for parameter identification, model-based control, and time/energy optimal trajectory planning for continuous path and point-to-point trajectories. Each of these optimizations contributes to the improvement of the overall system. Existing optimization techniques are adapted and extended for use with a standard industrial robot scenario and combined with a comprehensive toolkit with discussions on the interplay between the separate components. Most importantly, all procedures are evaluated in practical experiments on a standard robot with industrial control hardware and the recorded measurements are presented, a step often missing in publications in this area.


2013 ◽  
Vol 850-851 ◽  
pp. 628-631
Author(s):  
Fang He

Control system is a very important part of flexible manufacturing system, But the disadvantages of traditional FMS communication network is getting more and more can't meet the need of the high-speed development of flexible manufacturing system technology, the real-time and the high efficiency of the communication system, this paper puts forward the fieldbus network used in flexible manufacturing system. By means of field bus communication technology to realize flexible manufacturing system, set up the master station and slave station in the system, multi-level real-time management, the reliability of the system has been greatly improved.


Author(s):  
J.F. Aviles-Viñas ◽  
I. Lopez-Juarez ◽  
R. Rios-Cabrera

Purpose – The purpose of this paper was to propose a method based on an Artificial Neural Network and a real-time vision algorithm, to learn welding skills in industrial robotics. Design/methodology/approach – By using an optic camera to measure the bead geometry (width and height), the authors propose a real-time computer vision algorithm to extract training patterns and to enable an industrial robot to acquire and learn autonomously the welding skill. To test the approach, an industrial KUKA robot and a welding gas metal arc welding machine were used in a manufacturing cell. Findings – Several data analyses are described, showing empirically that industrial robots can acquire the skill even if the specific welding parameters are unknown. Research limitations/implications – The approach considers only stringer beads. Weave bead and bead penetration are not considered. Practical implications – With the proposed approach, it is possible to learn specific welding parameters despite of the material, type of robot or welding machine. This is due to the fact that the feedback system produces automatic measurements that are labelled prior to the learning process. Originality/value – The main contribution is that the complex learning process is reduced into an input-process-output system, where the process part is learnt automatically without human supervision, by registering the patterns with an automatically calibrated vision system.


Sign in / Sign up

Export Citation Format

Share Document