scholarly journals Determination of Dynamic Parameters of a Permanent Magnet while I Hold in a Pulse Magnetic Field

Author(s):  
I.M. Yachikov ◽  
◽  
V.I. Shiryaev ◽  
2011 ◽  
Vol 177 ◽  
pp. 23-35 ◽  
Author(s):  
Andrzej Kot

The paper presents description of physical phenomena arising during the process of electrodynamic forming by means of axisymetric inductors generating pulse magnetic field. Presented material shows the way for determination of pressures acting on non-ferrous pipe elements with an assumption of magnetic flux variation character in system. The paper describes also stages of energy conversion from electric energy of capacitors discharge into mechanical energy of pressure forming semi-finished product. The knowledge about presented phenomena allow to predict final shape of formed product during free forming by electrodynamic method.


Author(s):  
Jianqi Li ◽  
Yu Zhou ◽  
Jianying Li

This paper presented a novel analytical method for calculating magnetic field in the slotted air gap of spoke-type permanent-magnet machines using conformal mapping. Firstly, flux density without slots and complex relative air-gap permeance of slotted air gap are derived from conformal transformation separately. Secondly, they are combined in order to obtain normalized flux density taking account into the slots effect. The finite element (FE) results confirmed the validity of the analytical method for predicting magnetic field and back electromotive force (BEMF) in the slotted air gap of spoke-type permanent-magnet machines. In comparison with FE result, the analytical solution yields higher peak value of cogging torque.


2006 ◽  
Vol 126 (12) ◽  
pp. 1722-1729 ◽  
Author(s):  
Akeshi Takahashi ◽  
Haruo Koharagi ◽  
Satoshi Kikuchi ◽  
Kazumasa Ide ◽  
Kazuo Shima

2008 ◽  
Vol 44 (8) ◽  
pp. 2016-2020 ◽  
Author(s):  
Changliang Xia ◽  
Hongfeng Li ◽  
Tingna Shi

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 3774-3783
Author(s):  
Wasiq Ullah ◽  
Faisal Khan ◽  
Erwan Sulaiman ◽  
Irfan Sami ◽  
Jong-Suk Ro

Sign in / Sign up

Export Citation Format

Share Document